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Boltzmann Machines

Boltzmann Machines (BM) are stochastic neural networks that define a probability

distribution over binary vectors based on the Ising model [Ackley et al., 1985]

A BM consists of a visible layer x ∈ {0, 1}m and a hidden layer z ∈ {0, 1}n

Eθ(x, z) = −x>Wz − 1

2
x>W(V)x − 1

2
z>W(L)z − a>x − b>z,

Pr(x, z | θ) = 1

Z(θ)
exp(Eθ(x, z)) and Z(θ) =

∑
x′,z′

exp(Eθ(x′, z′)) .

Z(θ) makes it difficult to train BMs
BMs are restricted to very small datasets
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Restricted Boltzmann Machines

A solution was to restrain the connections in the model [Smolensky, 1986]

The Restricted Boltzmann Machine (RBM) is a BM with a bipartite connection graph

Eθ(x, z) = −x>Wz − a>x − b>z, (RBM)

RBMs were used for a variety of ML tasks prior to modern DNNs

[Larochelle and Bengio, 2008, Salakhutdinov et al., 2007, Hinton and Salakhutdinov, 2006]

RBMs can scale to image data sets such as MNIST

The gradient of the log-likelihood of an RBM for the interaction termsW is

∂

∂WL(D, θ) = Eq(X)pθ(Z|X)(xz>)− Epθ(X,Z)(xz>)
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Contrastive Divergence
RBM layers are conditionally independent

pθ(x|z) =
m∏
i=1

pθ(xi|z) and pθ(z|x) =
n∏

i=1

pθ(zi|x)

CD-k algorithm [Hinton, 2002, Carreira-Perpiñán and Hinton, 2005]

zj(t) ∼ pθ(zj = 1 | x(t)) = σ

(∑
i

Wijx(t)i + bj

)

x(t+ 1)i ∼ pθ(xi = 1 | z(t)) = σ

∑
j

Wijz(t)j + ai



Epθ(Z|X=x)(xz>) ≈ xz(0)> and Epθ(X,Z)(xz>) ≈ x(k)z(k)>
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Deep Boltzmann Machines
A layered RBM was introduced to capture richer patterns [Salakhutdinov and Hinton, 2009, 2012]

Eθ(x, z[1], . . . , z[L]) = −a>x −
L∑

i=1

b>
i z[i] − x>W(1)z[1] −

L−1∑
i=1

z>[i]W(i+1)z[i+1]. (DBM)
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Gaussian-Bernoulli RBMs
Gaussian-Bernoulli RBMs (GRBM) extend RBMs to model continuous visible units x ∈ Rm

and discrete hidden units [Welling et al., 2004]

Eθ(x, z) = −1

2

m∑
i=1

(xi − ai)2

si
−

m∑
i=1

n∑
j=1

Wij
xi

si
zj −

n∑
j=1

bjzj ,

Z(θ) =

∫ ∞

−∞

∑
z

exp(Eθ(x, z))dx.
(GRBM)

Contrastive divergence extends to GRBMs

zj(t) ∼ pθ(Zj = 1 | x(t)) = σ

(
−bj −

∑
i

Wij
x(t)i
si

)
,

x(t+ 1)i ∼ pθ(Xi | z(t)) = Normal

µi +
∑
j

Wijz(t)j , si

 .
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Latent Variable Models

BMs are instances of latent variable models (LVM) [Bishop, 2006]

Pr(X= x | θ) =
∑

z
Pr(X= x,Z= z | θ)

LVMs are the backbone of VAEs and other modern generative models

[Kingma and Welling, 2014, Ho et al., 2020]

For a dataset D = {x(1), . . . , x(N)}, the log-likelihood of an LVM is

L(D, θ) =
1

N

N∑
i=1

`i(θ) where `i(θ) = log Pr(X= x(i) | θ)

Gradients are usually hard to evaluate due to marginalization
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Expectation Maximization Algorithm

The Evidence Lower Bound for the log-likelihood

`i(θ) ≥
∑

z
qi(z) log pθ(x(i), z)

qi(z)
(ELBO)

EM algorithm is a two step iterative solution [Baum and Petrie, 1966, Dempster et al., 1977]

Qi(θ | θ(old)) =
∑

z
pθ(old)(z | x(i)) log

(
pθ(x(i), z)

pθ(old)(z | x(i))

)
(E step)

θ(new) = arg max
θ

1

N

N∑
i=1

Qi(θ | θ(old)) (M step)
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Comments on the EM algorithm

The EM algorithm guarantees monotonic log-likelihood

`i(θ) ≥ Qi(θ | θ(k)) for all θ and `i(θ(old)) = Qi(θ
(old) | θ(old)),

L(D, θ(new)) ≥ L(D, θ(old))

ELBO can be seen as a consequence of Shanon’s data processing inequality [Shannon, 1948]

The EM algorithm has an information geometric interpretation [Amari, 1995]
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Takeaways

Variants of BMs are often more useful in practice

LVMs are very useful in unsupervised learning

Probabilistic LVMs are hard to train; EM algorithm is the answer
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Quantum Boltzmann Machines
Hamiltonian-based models

H(θ)=
∑
r

θrHr and Z(θ)=Tr exp(H(θ))

ρ(θ) =
exp(H(θ))

Z(θ)
and ρV(θ) = TrLρ(θ)

QBM Hamiltonian based on the transverse field Ising model [Amin et al., 2018]

H(θ) =


−

m∑
i=1

aiσ(z)
i −

n∑
i=1

biσ
(z)
m+i −

m+n∑
i=1

Γiσ
(x)
i

−
m∑
i=1

n∑
j=1

Wijσ
(z)
i σ

(z)
j −

m∑
i=1

m∑
j=1

W(V)
ij σ

(z)
i σ

(z)
j −

n∑
i=1

n∑
j=1

W(L)
ij σ

(z)
m+iσ

(z)
m+j
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Projective Log-likelihood

An objective function based on projective measurements

[Amin et al., 2018, Anschuetz and Cao, 2019, Zoufal et al., 2021, Demidik et al., 2025]

LP(D, θ) =
1

N

N∑
i=1

log Tr
(
(Λ(v(i))⊗ IL)ρ(θ)

)
=

1

N

N∑
i=1

log Tr
(
Λ(v(i))TrL(ρ(θ))

)
, (PL)

Talks already discussed: gradients are hard because of the projection operators

15



Quantum Log-likelihood

An objective based on the relative entropy between density operators

[Kieferová and Wiebe, 2017, Wiebe and Wossnig, 2019, Kappen, 2020]

LU(ηV, θ) = Tr (ηV log TrLρ(θ)) = Tr (ηV log ρV(θ)) (QL)

Talks already discussed: gradients are hard because of the partial trace
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Density Operators

Definition (Density Operator)

Density operators on a Hilbert space H is the set P(H) of Hermitian, positive semi-definite
operators with unit trace.

The KL divergence can be extended to density operators [Cover and Thomas, 2006, Umegaki, 1962]

Definition (Umegaki Relative Entropy)

Let ω and ρ be density operators in P(H)with ker(ρ) ⊆ ker(ω). Their relative entropy is

DU(ω, ρ) = Tr(ω logω)− Tr(ω log ρ).

No perfect analog of conditional probability

Proofs from probabilistic LVMs breakdown due to non-commutativity
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Petz Recovery Map

Theorem (Monotonicity of Relative Entropy)

For density operators ω and ρ in P(H) such that ker(ω) ⊂ ker(ρ),DU(ω, ρ) ≥ DU(N (ω),N (ρ)).

Petz [1986, 1988] proved conditions for when MRE is saturated

Theorem (Petz Recovery Map)

For states ω and ρ in P(HA) and a CPTP mapN : P(HA) → P(HB),

DU(ω, ρ) = DU(N (ω),N (ρ))

if and only if there exists a CPTP mapR such thatR(N (ω)) = ω andR(N (ρ)) = ρ.
Furthermore, on the support ofN (ρ),R is explicity given by the Petz recovery map

RN ,ρ(ω) = ρ1/2N †
(
N (ρ)−1/2ωN (ρ)−1/2

)
ρ1/2. (PRM)
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Projective Measurement

Definition (Projective Measurement)

A projective measurement is described by a Hermitian observable O in T (H). If the

observable has spectral decomposition O =
∑dH

i=1 λiΛi where Λi is the projector onto the

eigenspace ofO with eigenvalue λi, the measurement results in outcome λi with

probability Pr(λi) = Tr(ρΛi).

Assume that data is coming from projective measurements of some ground truth density

operator. The empirical target operator is then

ηV =
1

N

N∑
i=1

Λ(v(i)).
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Density Operator LVMs

Definition
A Density Operator Latent Variable Model (DO-LVM) specifies the density operator

ρV ∈ P(HV) on observables in HV through a joint density operator ρ ∈ P(HV ⊗HL) as
ρV = TrL (ρ(θ))where the space HL is not observed.

Lemma
For a data set D = {v(1), . . . , v(N)} arising out of projective measurements, let the empirical
data density operator be ηV. Then for a DO-LVM ρ(θ),

LP(D, θ) ≥ LU(ηV, θ).
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Evidence Lower Bound
Lemma (Quantum ELBO)
Let J (ηV) = {η | η ∈ P(HV ⊗HL) & TrLη = ηV} be the set of feasible extensions for data
ηV ∈ P(HV). Then for a DO-LVM ρ(θ) and η ∈ J (ηV),

LU(ηV, θ) ≥ QELBO(η, θ) = Tr(η log ρ(θ)) + S(η)− S(ηV). (QELBO)

By the monotonicity of relative entropy [Lindblad, 1975]

DU(η, ρ(θ)) ≥ DU(ηV, ρV(θ)).

Expanding the expression for Umegaki relative entropy and rearranging

Tr(η log η)− Tr(η log ρ(θ)) ≥ Tr(ηV log ηV)− Tr(ηV log ρV(θ)), and

Tr(ηV log ρV(θ)) ≥ Tr(η log ρ(θ))− Tr(η log η) + Tr(ηV log ηV),

LU(ηV, θ) ≥ Tr(η log ρ(θ)) + SVN(η)− SVN(ηV).
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Deriving DO-EM

The classical EM algorithm is a consequence of the evidence lower bound being a minorant

of the log-likelihood.

Monotonicity of relative entropy is often not saturated for the partial trace operation

[Lesniewski and Ruskai, 1999, Berta et al., 2015, Wilde, 2015, Carlen and Vershynina, 2020, Cree and Sorce, 2022].

Appeal to the information geometric interpretation of EM.
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Quantum Information Projection

Definition (Quantum Information Projection)

The Quantum Information Projection of a density operator ρ in P(HA ⊗HB) onto a density
operator ω in P(HA)with respect to the partial trace TrB : P(HA ⊗HB) → P(HA) is the
density operator ξ∗ in P(HA ⊗HB) such that

ξ∗ = argmin
TrB(ξ)=ω

DU(ξ, ρ).

Definition (Sufficient Conditions)
Two density operators ρ in P(HA ⊗HB) and ω in P(HA) satisfy the sufficient conditions if:

TrL(ρ) is faithful

[ρ,TrB(ρ)⊗ IB ] = 0, and

[ω,TrB(ρ)] = 0.
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Quantum Information Projection

Definition (Quantum Information Projection)

The Quantum Information Projection of a density operator ρ in P(HA ⊗HB) onto a density
operator ω in P(HA)with respect to the partial trace TrB : P(HA ⊗HB) → P(HA) is the
density operator ξ∗ in P(HA ⊗HB) such that

ξ∗ = argmin
TrB(ξ)=ω

DU(ξ, ρ).

Theorem
Suppose ρ and ω are two density operators in P(HA ⊗HB) and P(HA) respectively such that
the Sufficient Conditions are satisfied, the solution to the QIP problem is the Petz recovery map

ξ∗ = RTrB ,ρ(ω).
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DO-EM

η(θ(old)) = argmin
TrLη=ηV

DU(η, ρ(θ
(old)))

Q(θ; θ(old)) = QELBO(η(θ(old)), ρ(θ))

Algorithm Density Operator Expectation Maximization

1: Input: Data density operator ηV and model parameters θ
(0)

2: while not converged do

3: E Step: η(t) = argmin
η:TrLη=ηV

DU(η, ρ(θ
(t)))

4: M Step: θ(t+1) = argmax
θ

Tr(η(t) log ρ(θ))
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Properties of DO-EM

DO-EM guarantees log-likelihood ascent under the Sufficient Conditions

DO-EM reduces to the classical EM algorithm if the operators are diagonal

DO-EM solves the problem of computing gradients!

For a Hamiltonian-based model

ρ(θ) = exp(H(θ))/Z(θ), H(θ) =
∑
r

θrHr,

and an E-step output η(t), the gradient ofQ(θ; θold) in the M-step with respect to θr is

∂

∂θr
Q(θ; θold) = 〈Hr〉η(t) − 〈Hr〉ρ(θ).
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Classical Data
Theorem (CQ-LVM)
A DO-LVM that satisfies the Sufficient Conditions for a classical dataset generated by the

measurement X =
∑dV

i=1 xi Λ(ui) if it can be expressed as

ρ(θ) =

dV∑
i=1

Pr(X=xi|θ)Λ(ui)⊗ ρL(i|θ) where ρL(i|θ) ∈ P(HL). (CQ-LVM)

Algorithm DO-EM for CQ-LVM1

1: Input: D = {v(1), . . . , v(N)} and θ(0)
2: while not converged do

3: for i = 1 to N do

4: Qi(θ; θ
(t)) = Tr

(
ρL(x(i) | θ(t)) logP (x(i) | θ)ρL(x(i) | θ)

)
+ SVN(ρL(x(i) | θ(t)))

5: θ(t+1) = argmaxθ
1
N

∑N
i=1 Qi(θ; θ

(t))

1Hayashi’s em-algorithm for sq-QBMs is a special case of this theorem, as sq-QBMs are instances of CQ-LVMs 27



QBMs on Mixture of Bernoulli datasets
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DO-EM

PGT (Umegaki)

PGT (Projective)

8+2 SR QBMwith projective log-likelihood gradient-based training (PGT) (40s/step)2

8+2 QBM satisfying the Sufficient Conditions trained using DO-EM (0.2s/step)

2Amin et al. [2018]
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Contrastive Divergence

H(θ) = −
m∑
i=1

aiσ(z)
i −

n∑
i=1

biσ
(z)
m+i −

m∑
i=1

n∑
j=1

Wijσ
(z)
i σ

(z)
m+j −

n∑
i=1

Γiσ
(z)
m+i (QRBM)

Conditioned on visible layer, Hamiltonian of each hidden qubit is

HL(j|x, θ) = −beff
j σ(z) − Γjσ

(x)

Leading to Gibbs sampling scheme3

〈σ(z)
j 〉v =

beff
j

Dj
tanhDj and 〈σ(x)

j 〉v =
Γj

Dj
tanhDj

3details in paper; suffice to see one 2n × 2n matrix becones n tractable 2× 2 matrices
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QiDBM

Quantum interleaved Deep Boltzmann Machine

H(θ) =


−

m∑
i=1

aiσ(z)
i −

m∑
i=1

b(1)
i σ

(z)
`+i −

n∑
i=1

b(2)
i σ

(z)
`+m+i −

m∑
i=1

Γiσ
(x)
`+i

−
∑̀
i=1

m∑
j=1

W(1)
ij σ

(z)
i σ

(z)
`+j −

m∑
i=1

n∑
j=1

W(2)
ij σ

(z)
`+iσ

(z)
`+m+j

(QiDBM)

Conducive to CD like QRBMs

Compare generated samples using the Fréchet Inception Distance [Seitzer, 2020].
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QiDBMs on MNIST
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QiDBMwith 18,000 units compared against DBM in Taniguchi et al. [2023].
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QiDBMs on MNIST

Figure: QiDBMs after 175 epochs Figure: DBMs after 175 epochs
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QiDBMs on Binary MNIST
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QGRBM

Quantum Gaussian-Bernoulli Restricted Boltzmann Machine

H(x, θ) = −
m∑
i=1

(xi − ai)2

s2i
IL −

n∑
j=1

beff
j σ

(z)
j −

n∑
j=1

Γjσ
(x)
j , (QGRBM)

ρ(θ) =
1

Z(θ)

∫
x
Λ(x)⊗ exp(H(x, θ))dx,

Z(θ) =

∫ +∞

−∞
Tr exp(H(x, θ))dx.

Infinite dimensional density operator but can still do CD!
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QiDBMs on MNIST
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QGRBMwith 11,000 units compared against GRBM in Liao et al. [2022].
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QGRBMs on CelebA-32

Figure: QGRBM samples Figure: GRBM samples
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Final Thoughts

No hyperparameter tuning on quantum models and similar computational resources

CQ-LVMs may be useful for classical data too

DO-EM is ready for any DO-LVM
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Paper and Code

arXiv:2507.22786 (long version out today!)

All code will be documented and released by January 1st, 2026.
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