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Probabilistic Latent Variable Models



Boltzmann Machines

Boltzmann Machines (BM) are stochastic neural networks that define a probability
distribution over binary vectors based on the Ising model [Ackley et al., 1985]

A BM consists of a visible layer x € {0,1}™ and a hidden layer z € {0, 1}"
1 1
Ey(x,2) = —x' Wz — §XTW(V)X - §ZTW(L)Z —a'x—b'z

Pr(x,z | 0) = %0) exp(Fy(x,z)) and Z(0) = Z exp(Ep(x',7')) .

Z(0) makes it difficult to train BMs
BMs are restricted to very small datasets



Restricted Boltzmann Machines

A solution was to restrain the connections in the model [Smolensky, 1986]
The Restricted Boltzmann Machine (RBM) is a BM with a bipartite connection graph

Fp(x,2) = —x Wz —a'x —b'z, (RBM)

RBMs were used for a variety of ML tasks prior to modern DNNs
[Larochelle and Bengio, 2008, Salakhutdinov et al., 2007, Hinton and Salakhutdinov, 2006]
RBMs can scale to image data sets such as MNIST

The gradient of the log-likelihood of an RBM for the interaction terms W is

9
G £(D+0) = Eqoopyp (x21) = Epyx 2 (x2)



Contrastive Divergence

RBM layers are conditionally independent

m
x|z) = Hpg(xi\z) and py(z Hpg z;|X)
i=1

CD-% algorithm [Hinton, 2002, Carreira-Perpifian and Hinton, 2005]
zj(t) ~po(z; =1 |x(t) _U<ZW”X

x(t+1); ~po(xi =1]2z(t) =0 (ZWUZ —I—az>

Ep (z1x=x) (xz") ~xz(0)" and Epy(x,2) (xz") ~ x(k)z(k)"



Deep Boltzmann Machines

A layered RBM was introduced to capture richer patterns [Salakhutdinov and Hinton, 2009, 2012]

L L—-1
E‘g(X7 Z[l], cen ,Z[L]) = 7aTX - ijzm - XTW(l)Z[l] - Z ZEE]W(iJrl)Z[i_;'_l]. (DBM)

i=1 =1




Gaussian-Bernoulli RBMs

Gaussian-Bernoulli RBMs (GRBM) extend RBMs to model continuous visible units x € R™
and discrete hidden units [Welling et al., 2004]

1
Ey(x,2) = —5

ZZW” —ijZj7

=1j=1 =1 (GRBM)

/ Zexp Ey(x,2))d

Contrastive divergence extends to GRBMs

Ms

ij )
Si

x(t+1); ~ pe(X; | z(t)) = Normal (,ui + ZWijZ(t)j, Si) .

J

2;(t) ~ po(Z; = 1| x(t)) = (b—



Latent Variable Models

BMs are instances of latent variable models (LVM) [Bishop, 2006]

Pr(X=x|0) =Y Pr(X=x,Z=2]0)

LVMs are the backbone of VAEs and other modern generative models
[Kingma and Welling, 2014, Ho et al., 2020]

Fora dataset D = {x(1), ..., x(")1, the log-likelihood of an LVM is
ZZ ) where /;(#) = log Pr(X=x" | 6)

Gradients are usually hard to evaluate due to marginalization



Expectation Maximization Algorithm

The Evidence Lower Bound for the log-likelihood

(1) 7
) > Z qi(z log (z)) (ELBO)

EM algorithm is a two step iterative solution [Baum and Petrie, 1966, Dempster et al., 1977]

(2) z)
i(6 g(old) . (Z) 1 Lﬂ E ste
| Zpﬁ( ld) ‘ X Og Potora) (Z | X(Z)) ( p)

1
(new) _ ) (old)
0 Argmax ;:1 Q6] 0\ (M step)

10



Comments on the EM algorithm

The EM algorithm guarantees monotonic log-likelihood

0:(0) > Qi(0 | 6% forall 6 and £;(#°'Y) = Q;(#©V | 91D},

L(D,60) > £(D, 91D

ELBO can be seen as a consequence of Shanon’s data processing inequality [Shannon, 1948]

The EM algorithm has an information geometric interpretation [Amari, 1995]

11



Takeaways

Variants of BMs are often more useful in practice
LVMs are very useful in unsupervised learning

Probabilistic LVMs are hard to train; EM algorithm is the answer

12
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Quantum Boltzmann Machines

Hamiltonian-based models

6)=>_0,H, and Z(0)=Tr exp(H(6))

_ exp(H(0))

p(0) = Z00) and  py(0) = Tr.p(0)

QBM Hamiltonian based on the transverse field Ising model [Amin et al., 2018]
z:aZ (=) Zb O'm+2 Z T U(I)
L Wael e -3 S W0 - Y Wil ol

i=1 j=1 =1 j=1 =1 j=1

H(0) =

14



Projective Log-likelihood

An objective function based on projective measurements
[Amin et al., 2018, Anschuetz and Cao, 2019, Zoufal et al., 2021, Demidik et al., 2025]

ZlogTr ( Y1) ) ZlogTr ( NTry(p (9))) , (PL)

Talks already discussed: gradients are hard because of the projection operators

15



Quantum Log-likelihood

An objective based on the relative entropy between density operators
[Kieferova and Wiebe, 2017, Wiebe and Wossnig, 2019, Kappen, 2020]

Ly (ny,0) = Tr (nylog Trop(0)) = Tr (1 log py(6))

Talks already discussed: gradients are hard because of the partial trace

Q)

16



Density Operators

Definition (Density Operator)

Density operators on a Hilbert space # is the set P(#) of Hermitian, positive semi-definite
operators with unit trace.

The KL divergence can be extended to density operators [Cover and Thomas, 2006, Umegaki, 1962]

Definition (Umegaki Relative Entropy)
Let w and p be density operators in P(H) with ker(p) C ker(w). Their relative entropy is

Dy(w, p) = Tr(wlogw) — Tr(wlog p).

No perfect analog of conditional probability
Proofs from probabilistic LVMs breakdown due to non-commutativity

17



Petz Recovery Map

Theorem (Monotonicity of Relative Entropy)
For density operators w and p in P(H) such that ker(w) C ker(p), Dy(w, p) > Dy(N (w), N (p)).
Petz [1986, 1988] proved conditions for when MRE is saturated

Theorem (Petz Recovery Map)
For states w and p in P(H ) and a CPTPmap N : P(Ha) — P(Hp),

Dy(w, p) = Du(N(w), N(p))

if and only if there exists a CPTP map R such that R(N (w)) = w and R(N(p)) = p.
Furthermore, on the support of N'(p), R is explicity given by the Petz recovery map

R (@) = p 2N (N (o) 2w N (p)7112) p/2, (PRM)

18



Projective Measurement

Definition (Projective Measurement)

A projective measurement is described by a Hermitian observable O in 7(#). If the
observable has spectral decomposition O = ijl AiA; where A; is the projector onto the
eigenspace of O with eigenvalue );, the measurement results in outcome \; with
probability Pr(\;) = Tr(pA;).

Assume that data is coming from projective measurements of some ground truth density
operator. The empirical target operator is then

1 N
S E (2)
v N 2 A7),

19



Density Operator LVMs

Definition

A Density Operator Latent Variable Model (DO-LVM) specifies the density operator
pv € P(H.) on observables in . through a joint density operator p € P(H, ® H,) as
pv = Try, (p(0)) where the space #,, is not observed.

Lemma
Foradataset D = {v(Y) ... v(™)} arising out of projective measurements, let the empirical

data density operator be 1.,. Then for a DO-LVM p(6),
ﬁp (D, 0) Z EU (77v> 0)

20



Evidence Lower Bound

Lemma (Quantum ELBO)
Let 7(ny) = {n|n€PHv®H.) & Tr.n = n,} be the set of feasible extensions for data
v € P(Hy). Then for a DO-LVM p(6) and n € T (1),

Ly(ny,0) = QELBO(n, 0) = Tr(nlog p(6)) + S(n) — S(ny). (QELBO)

By the monotonicity of relative entropy [Lindblad, 1975]
Dy (n, p(8)) = Du (v, pv(6))-
Expanding the expression for Umegaki relative entropy and rearranging

Tr(nlogn) — Tr(nlog p(9)) > Tr(ny logny) — Tr(ny log py(6)), and
Tr(ny log py(0)) > Tr(nlog p(9)) — Tr(nlogn) + Tr(ny logny),
Ly(ny,0) > Tr(nlog p(9)) + Svn(n) — Syn(nv).-

21



Deriving DO-EM

The classical EM algorithm is a consequence of the evidence lower bound being a minorant
of the log-likelihood.

Monotonicity of relative entropy is often not saturated for the partial trace operation
[Lesniewski and Ruskai, 1999, Berta et al., 2015, Wilde, 2015, Carlen and Vershynina, 2020, Cree and Sorce, 2022].

Appeal to the information geometric interpretation of EM.

22



Quantum Information Projection

Definition (Quantum Information Projection)

The Quantum Information Projection of a density operator p in P(H 4 ® H ) onto a density
operator w in P(H 4) with respect to the partial trace Trp : P(Ha @ Hp) — P(Ha) is the
density operator £* in P(H4 ® Hp) such that

& = argmin Dy(E, p).
Trp(§)=w

Definition (Sufficient Conditions)

Two density operators pin P(H 4 ® Hp) and w in P(H 4) satisfy the sufficient conditions if:
Tr(p) is faithful
[p,Tre(p) ® 1] =0, and
[, Trz(p)] = 0.

23



Quantum Information Projection

Definition (Quantum Information Projection)

The Quantum Information Projection of a density operator p in P(H 4 ® Hp) onto a density
operator w in P(H 4) with respect to the partial trace Trp : P(Ha @ Hp) — P(Ha) is the
density operator £* in P(H 4 ® H ) such that

& = argmin Dy(&, p).
Trp(§{)=w

Theorem
Suppose p and w are two density operators in P(H 4 ® Hpg) and P(H 4) respectively such that
the Sufficient Conditions are satisfied, the solution to the QIP problem is the Petz recovery map

£ = Reep p(w)-

24



DO-EM

n(0°'Y) = argmin Dy(n, p(0©°'D))

Trun=nv

Q(6; ') = QELBO(5(8°'Y), p(6))

Algorithm Density Operator Expectation Maximization

. Input: Data density operator 7, and model parameters 6(°)
while not converged do
E Step: ) = argmin Dy(n, p(®))
n:TrLn=nv

M Step: 6t = argmax Tr(n® log p(#))
0

WNR

»

25



Properties of DO-EM

DO-EM guarantees log-likelihood ascent under the Sufficient Conditions
DO-EM reduces to the classical EM algorithm if the operators are diagonal
DO-EM solves the problem of computing gradients!

For a Hamiltonian-based model

p(0) = exp(H(0))/2(0),  H(O) =D 0. H,,

and an E-step output 1), the gradient of Q(6; §°'?) in the M-step with respect to 6, is

7]
00,

Q(G, GOId) = <H7'>77(t) - <H7'>p(9)-

26



Classical Data

Theorem (CQ-LVM)
A DO-LVM that satisfies the Sufficient Conditions for a classical dataset generated by the
measurement X = zf;l x; A(w;) if it can be expressed as

dv
p(0) = Pr(X=x;|0)A(w;) ® p.(i|0) where p.(i|0) € P(H.). (CQ-LVM)
1=1

Algorithm DO-EM for CQ-LVM!

1: Input: D = {v() ... v(")} and ()
2: while not converged do
3 fori=1toNdo
Q(8;601) = T (pu (x| 90 log P(x®) | ), (x| 8)) + Syn(pu (x| 9))
9+ = argmax, L SN 0;(6;60)

A

1Hayashi's em-algorithm for sq-QBMs is a special case of this theorem, as sq-QBMs are instances of CQ-LVMs 27



QBMs on Mixture of Bernoulli datasets

=
[}
S-1
jﬂ 20
Q
|
s Algorithm
—— DO-EM
—— PGT (Umegaki)
—-30 -==- PGT (Projective)
0 5 10 20 25 30

15
Epoch

8+2 SR QBM with projective log-likelihood gradient-based training (PGT) (40s/step)?
8+2 QBM satisfying the Sufficient Conditions trained using DO-EM (0.2s/step)

2Amin et al. [2018]
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Generating images with QBMs
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Contrastive Divergence

S a0 Y bl 3OS W) ZFZ 2. (qreM)
=1 i=1

=1 j=1

Conditioned on visible layer, Hamiltonian of each hidden qubit is

HL<j|X, 9) _ _bt;ffo_(Z) _ I‘Jo-(x)

Leading to Gibbs sampling scheme?

eff

T,
tanh D; and ( *)y = —L tanh D,

(), =
J DJ v Dj

v

Sdetails in paper; suffice to see one 2™ x 2™ matrix becones n tractable 2 x 2 matrices
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QiDBM

Quantum interleaved Deep Boltzmann Machine

S R DL W

HO) ={ = . (QIDBM)
1 z (2
ZZW( of® UéJF)J ZZW o) Hmﬂ
i=1 j=1 i=1 j=1

Conducive to CD like QRBMs
Compare generated samples using the Fréchet Inception Distance [Seitzer, 2020].
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QiDBMs on MNIST

Model
—— DBM (6272)
—— QIDBM (6272)
—— DBM (6273)

250 4

200 4

FID

150 4

100 4

0 200 400 600 800 1000

Epoch

QiDBM with 18,000 units compared against DBM in Taniguchi et al. [2023].
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QiDBMs on MNIST

FIEEEHEENH 7]79]919|9]7]7
716|213 f]/]0]8 7]7[7]7(9|9]7]9
HEKEINMANY 7|9 7]0)7]|3]0e
O|s/13[#|2]/]7 7]919]9(9]|7]3]%
7|0[¢3]’|3]a]9 7]9]7]7|7]4]9]9
4|54 <|3|0[4]/ 9|919]9|3|7]7]7
HENACIE] 7]717]7(3]7]7]9

21_1/17111013|C 2919171517172

Figure: QiDBMs after 175 epochs Figure: DBMs after 175 epochs



QiDBMs on Binary MNIST

Minimum FID
e o (=2 =1
(=3 (=} (=3 (=]

w
=)

b
=)

Method
—e— QiDBM
—e— DBM

0.6

0.7

08 09 10
Number of Parameters

11
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QGRBM

Quantum Gaussian-Bernoulli Restricted Boltzmann Machine

Hx,0) = - %1 DL R VTR (QGRBM)
i=1 ? j=1 J=1
1
p(6) = 0 /A(x) ® exp(H(x, 0))dx,

+oo
Z(0) = [ Trexp(H(x, 0))dx.

Infinite dimensional density operator but can still do CD!
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QiDBMs on MNIST

- * Model
350
—e— GRBM
° —e— QGRBM
300 4
250 .

FID

200 4
150 4 .

\\/’\-\/\

L i

0 200 400 600 800

Epoch

QGRBM with 11,000 units compared against GRBM in Liao et al. [2022].
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QGRBMs on CelebA-32

Figure: QGRBM samples
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Final Thoughts

No hyperparameter tuning on quantum models and similar computational resources
CQ-LVMs may be useful for classical data too

DO-EM is ready for any DO-LVM

38



Paper and Code

St
&

arXiv:2507.22786 (long version out today!)

All code will be documented and released by January 1st, 2026.
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