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SETTING: QUANTUM MANY-BODY SYSTEMS

® Spin lattice: A C C ZV

® Hilbert space associated with A : %, = ® K. = ® C?

xeN xeA

® Density matrices: 8, :=S(H ) ={p€ RBF ) : p>0, tr[p] =1}
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® Hamiltonian: H, = Z Hy -

XCA :

H,, = 0 for diam((X) > k

® Finite-range (k-local inferactions): A (%)
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SETTING: QUANTUM MANY-BODY SYSTEMS

Spin lattice: A € C ZP

Hilbert space associated with A : %, = ® K. = ® C?

xeN xeA

Density matrices: &, =S(Z ) ={p € B(FH ) : p>0, trl[p] =1}
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Hamiltonian: H, = Z Hy

XCA :

H,, = 0 for diam((X) > k

Finite-range (k-local inferactions): A (%)
|Hy|| <J VX CA

Commuting: [Hy, Hy| =0 VXY CA
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GIBBS SAMPLING / PREPARATION OF GIBBS STATES

(llp=pll <€)



GIBBS SAMPLING / PREPARATION OF GIBBS STATES

How do we do Gibbs sampling?



GIBBS SAMPLING / PREPARATION OF GIBBS

H), = ZHX p =
XCA

How do we do Gibbs sampling?
® A typical way is via dissipation.

STATES
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EFFICIENT PREPARATION OF THE GIBBS STATE OF

THE 2D TORIC CODE

VIA DISSIPATION

Modified logarithmic Sobolev inequalities for CSS codes
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QUANTUM DISSIPATIVE EVOLUTIONS

HA=2HX p:

XCA Tr[e _'BHA]
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QUANTUM DISSIPATIVE EVOLUTIONS

* The dynamics of the system is dissipative!
e Assuming weak-coupling, the continuous-time evolution of a state in the system is given
by a Quantum Markov Semigroup (Markovian approximation)



QUANTUM DISSIPATIVE EVOLUTIONS

e _ﬂHA
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* The dynamics of the system is dissipative!
* Assuming weak-coupling, the continuous-time evolution of a state in the system is given
by a Quantum Markov Semigroup (Markovian approximation)

e Lindbladian: £ describes the dynamics
of the system and L(p) = 0

e Given 0 € S(H,)

e'“(0) =5 p




QUANTUM DISSIPATIVE EVOLUTIONS

e _IBHA

Tr[e—PHA]

H, = ZHX P =
XCA

* The dynamics of the system is dissipative!
e Assuming weak-coupling, the continuous-time evolution of a state in the system is given
by a Quantum Markov Semigroup (Markovian approximation)

e Lindbladian: [ describes the dynamics
of the system and L(p) = 0

e Given O €& S(HA) etﬁ(a-) tﬁ 1o

Dissipative quantum state engineering: Robust way of engineering relevant quantum
states and algorithms

[Verstraete, Wolf, Cirac, NatPhys ‘09]  [Kraus, Blichler, Diehl, Kantian, Micheli, Zoller, PRA ‘08]



EFFICIENT GIBBS SAMPLING WITH DISSIPATION

e Given 0 € S(H,)
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e Given 0 € S(Hp)

Efficient preparation of Gibbs states

When do we have || e~ (o) —p|li < e 2




EFFICIENT GIBBS SAMPLING WITH DISSIPATION

e Given 0 € S(Hp)

Efficient preparation of Gibbs states

When do we have || e~ (o) —p|li < e 2

Ingredients

. Efficient implementation of the Lindbladian

2. Rapid/fast mixing of the evolution



EFFICIENT IMPLEMENTATION OF THE LINDBLADIAN

I. Commuting case: Efficient implementation of Davies generator

[Rall, Wang, Wocjan, Quantum’23] [Li, Wang ICALP'23]

2. Non-commuting case: Efficient implementation of the CKG generatfor

[Chen, Kastoryano, Gilyen, arXiv:2311.09207]




EFFICIENT IMPLEMENTATION OF THE LINDBLADIAN

Number of qubits: | A |

I. Commuting case: Efficient implementation of Davies generator

[Rall, Wang, Wocjan, Quantum’23] [Li, Wang ICALP'23]

Circuit complexity: O(| A \2polylog |A|) Circuit depth: O(| A|polylog|A])

2. Non-commuting case: Efficient implementation of the CKG generatfor

[Chen, Kastoryano, Gilyen, arXiv:2311.09207]

Circuit complexity: O(| A \Zpolylog |A|) Circuit depth: O(| A |polylog|A])
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Modified logarithmic Sobolev inequality:
D(e'(0)lp) < D(a||p) e




RAPID/FAST MIXING OF THE EVOLUTION

Modified logarithmic Sobolev inequality:
D(e'(0)lp) < D(a||p) e

Rapid mixing:

sup [[e"“(p) — oy < poly(|A]) e
cES(HA)

Mixing time: 7mix(¢) = O(polylog |A])




RAPID/FAST MIXING OF THE EVOLUTION

{— 00

> P

Spectral gap

Fast mixing:

et[, (

o)

Modified logarithmic Sobolev inequality:
D(e'(0)]lp) < D(o]|p) e~

Rapid mixing:

sup  [|e”(p) — oll1 < poly(|A])e™"
c€S(HA)

sup  [|e”(p) — of[1 < exp(|A])e™!
cES(HA)

Mixing time: Tmix(¢) = O(polylog|A|) Mixing time: Tmix(¢) = O(poly |A])



RAPID/FAST MIXING OF THE EVOLUTION

1. Commuting case:

* 1D, TI, any positive temperature, rapid mixing
[Bardet, AC, Gao, Lucia, Perez-Garcia, Rouze, CMP'23 and PRL 23]
* High D, 2-local, under decay of correlations + gap, rapid mixing
[Kochanowski, Alhambra, AC, Rouze, CMP’'25
e High D, k-local, under decay of MCMI + gap, rapid mixing

[AC, Gondolf, Kochanowski, Rouze, arXiv:2412.017322]

* 2D, quantum double models, fast mixing

[Lucia, Perez-Garcia, Perez-Hernandez, FMS’'23]

2. Non-commuting case: Any dimension, high-enough temperature, rapid mixing
[Rouze, Stilck Franga, Alhambra, arXiv:2403.12691 and arXiv:2411.04885]
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RAPID/FAST MIXING OF THE EVOLUTION

1. Commuting case:

* 1D, TI, any positive temperature, rapid mixing
[Bardet, AC, Gao, Lucia, Perez-Garcia, Rouze, CMP'23 and PRL 23]
* High D, 2-local, under decay of correlations + gap, rapid mixing
[Kochanowski, Alhambra, AC, Rouze, CMP’'25
e High D, k-local, under decay of MCMI + gap, rapid mixing

[AC, Gondolf, Kochanowski, Rouze, arXiv:2412.017322]

* 2D, quantum double models, fast mixing

[Lucia, Perez-Garcia, Perez-Hernandez, FMS’'23]

Mixing time: O(polylog|A|) for rapid mixingg O(|A|lOg|A|) for fast mixing.

2. Non-commuting case: Any dimension, high-enough temperature, rapid mixing
[Rouze, Stilck Franga, Alhambra, arXiv:2403.12691 and arXiv:2411.04885]


https://arxiv.org/pdf/2412.01732
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Efficient preparation of Gibbs states

When do we have || e~ (o) —p|li < e 2

Ingredients

. Efficient implementation of the Lindbladian

2. Rapid/fast mixing of the evolution



EFFICIENT GIBBS SAMPLING

e Given 0 € S(H,)

Efficient preparation of Gibbs states

When do we have || e~ (o) —p|li < e 2

Ingredients

l. Efficient implementation of the Lindbladian  Circuit depth: O(| A |polylog|A|)
O(polylog|A|) for rapid mixing,
O(|A|log|A]|) for fast mixing.

2. Rapid/fast mixing of the evolution



EFFICIENT GIBBS SAMPLING

When do we have |e* () —p|l1 <e ?

Ingredients

l. Efficient implementation of the Lindbladian  Circuit depth: O(| A | polylog|A|)

O(polylog|A|) for rapid mixing,
O(|Allog|A|) for fast mixing.

2. Rapid/fast mixing of the evolution

Both cases vyield a circuit depth of at most O(| A \Zpolylog A )
to prepare the Gibbs state



Can we prove rapid mixing for the

2D toric code and similar models?




2D TORIC CODE

Geometry Interactions
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OTHER CSS CODES

ROTATED SURFACE CODE 2D TORIC CODE 3D TORIC CODE TESSELLATION

Interactions A,:=Q)X, and B, =) Z, e 8 )
VEdS VEOD
Hamiltonian  Hy := Hf + Hy HY = - Z A B Z 25



RESULTS

2D Toric code The Davies Lindbladian associated to the 2D toric code
has rapid mixing at every positive femperature

Loss of information in the 3D toric code

Since half of the Davies Lindbladian associated to the 3D toric code
has rapid mixing at every positive temperature,
quantum information in the 3D toric code is destroyed
exponentially fast, and only classical information can survive long times



PREPARATION VIA DISSIPATION: LIMITATIONS OF THE APPROACH

When do we have ||e'*(0) —p|li <e 2

Ingredients

l. Efficient implementation of the Lindbladian  Circuit depth: O(| A | polylog|A|)

O(polylog|A|) for rapid mixing,
O(|Allog|A|) for fast mixing.

2. Rapid/fast mixing of the evolution

Both cases vyield a circuit depth of at most O(| A \Zpolylog A )
to prepare the Gibbs state



PREPARATION VIA DISSIPATION: LIMITATIONS OF THE APPROACH

When do we have |e* () —p|l1 <e ?

Ingredients

l. Efficient implementation of the Lindbladian  Circuit depth: O(| A | polylog|A|)

O(polylog|A|) for rapid mixing,
O(|Allog|A|) for fast mixing.

2. Rapid/fast mixing of the evolution

Both cases vyield a circuit depth of at most O(| A \Zpolylog A )
to prepare the Gibbs state

Caveat: The mixing time depends exponentially on f!



PREPARATION VIA DISSIPATION: LIMITATIONS OF THE APPROACH

When do we have ||e'* (o) —p|l1 <e 2

Ingredients

1. Efficient implementation of the Lindbladian  Circuit depth: O(| A | polylog|A|)

O(polylog|A|) for rapid mixing,
O(|A|log|A|) for fast mixing.

Both cases vield a circuit depth of at most O(| A|”polylog|A])

2. Rapid/fast mixing of the evolution

to prepare the Gibbs state

Caveat: The mixing time depends exponentially on /!

Next, we explore another simpler approach for specific models



EFFICIENT PREPARATION OF THE GIBBS STATE OF

THE 2D TORIC CODE

VIA DUALITY

Efficient and simple Gibbs state preparaftion of the 2D toric code

-
E

via duality fo classical Ising chains
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DUALITY

Consider H; and H, two Hamiltonians.

We say that they are poly-depth dual if there exists a unitary U that can be
implemented by a circuit (of 2-local gates) of polynomial depth such that
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Consider H; and H, two Hamiltonians.

We say that they are poly-depth dual if there exists a unitary U that can be
implemented by a circuit (of 2-local gates) of polynomial depth such that

e_ﬁHl e_ﬁH2
Define — and =
Pl Tr[g—ﬂHl] P2 Tr[e‘ﬂHz]



DUALITY

Consider H; and H, two Hamiltonians.

We say that they are poly-depth dual if there exists a unitary U that can be
implemented by a circuit (of 2-local gates) of polynomial depth such that

e_ﬁHl e_ﬁH2
Define — and =
Pl Tr[g—ﬂHl] P2 Tr[e‘ﬂHz]

Then, P1 = UszT .



DUALITY

Consider H; and H, two Hamiltonians.

We say that they are poly-depth dual if there exists a unitary U that can be
implemented by a circuit (of 2-local gates) of polynomial depth such that

e_ﬂHl e_ﬁH2 ’}‘
Define = ——  and = ————— . Then, = Up,U"' .
P1 Tr[e—PH] P2 Tr[e—Pt) P1 P2

Therefore, if p; can be efficiently sampled, p, as well.



DUALITY

Consider H; and H, two poly-depth dual Hamiltonians with
H, = UHZUT and pP1 = UszT

Assume that p; can be efficiently sampled with € .



DUALITY

Consider H; and H, two poly-depth dual Hamiltonians with
H, = UHZUT and pP1 = UszT

Assume that p; can be efficiently sampled with € .

Time

Then p, can be efficiently sampled with U6 .

r7 i [oje
/ — [0)
n4 C
H T
\ — |0)
- ~ e
Poly(n) N~—



QUANTUM GIBBS SAMPLING VIA DUALITY

Consider H; and H, two poly-depth dual Hamiltonians with
H, = UHZUT and pP1 = UszT

L 0y®e

Assume that p; can be efficiently sampled with € . U 3

Then p, can be efficiently sampled with U€ . —

\ —[0)

Ingredients. For a relevant Hamiltonian £1,: Pol()

. Find a poly-depth circuit mapping it to H,

2. Find an efficient sampler for p;,




EXAMPLE: 1D ISING CHAIN

CLASSICAL 1D ISING CHAIN (OF LENGTH L)

L—1 1 2 3 4 5
H = — Z Jiotott! e ®© ®© (e o
i=1



EXAMPLE: 1D ISING CHAIN

CLASSICAL 1D ISING CHAIN (OF LENGTH L)

L—1 1 2 3 4 5
H = — Z Jiotott! e ®© ®© (e o
i=1

v

NON-INTERACTING HAMILTONIAN (OF LENGTH L)

UHUT = — Z Ji_10! e ® ® ® ®



EXAMPLE: 1D ISING CHAIN

CLASSICAL 1D ISING CHAIN (OF LENGTH L)

L—1 1 2 3 4 5
H = — Z Jiotott! e ®© ®© (e o
i=1

U:= CX(1,2)CX(2,3)--- CX(L—1,L)

1000
oY _ 0100
0001

001¢0

NON-INTERACTING HAMILTONIAN (OF LENGTH L)

UHUT = — Z Ji_10! e ® ® ® ®



EXAMPLE: 1D ISING CHAIN

CLASSICAL 1D ISING CHAIN

(OF LENGTH L)
L—1

U:=CX(1,2)CX(2,3)---CX(L —1,L)

v

NON-INTERACTING HAMILTONIAN
(OF LENGTH L)

L
UHU' = - " J;_10!
1=2

1 ) 3 4
@ 0 ® © ¢
l CX (4,5)
(@ (® (® D,
l CX (3,4)
e ® 9 O,
l CX(2,3)
Ol O, O,
l CX(1,2)
o O, O, O,



EXAMPLE: 1D ISING CHAIN

CLASSICAL 1D ISING CHAIN
(OF LENGTH L)

O(L) depth

NON-INTERACTING HAMILTONIAN
(OF LENGTH L)

_ i
o—BUHU

W can be sampled In @(1) :

L
UHU' = - " J;_10!
1=2



EXAMPLE: 1D ISING CHAIN

CLASSICAL 1D ISING CHAIN
(OF LENGTH L)

L—1 —H
L €
H = — Jiotott! ———— can be sampled in O(L).
; Tre—/H] ° ()

O(L) depth

O(L) depth

NON-INTERACTING HAMILTONIAN
(OF LENGTH L)

_ i
o—BUHU

W can be sampled In @(1) :

L
UHU' = - " J;_10!
1=2



DUALITY BETWEEN TORIC CODE AND CLASSICAL ISING CHAINS




DUALITY BETWEEN TORIC CODE AND CLASSICAL

2D TORIC CODE

Geometry Interactions
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DUALITY BETWEEN TORIC CODE AND CLASSICAL ISING CHAINS

2D TORIC CODE

Geometry Interactions

star plaquette
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DUALITY BETWEEN TORIC CODE AND CLASSICAL ISING CHAINS

MAIN RESULT For the 2D Toric Code in an L X L lattice,
there exists a quantum circuit C composed of O(L”) CX gates
and @(Lz) Hadamard gates such that

c( X 7A,)C and € Y 1,8,)C

veV, pCé&;

correspond fo 2 disjoint 1D Ising chains.



DUALITY BETWEEN TORIC CODE AND CLASSICAL ISING CHAINS

MAIN RESULT For the 2D Toric Code in an L X L lattice,
there exists a quantum circuit C composed of O(L”) CX gates
and @(Lz) Hadamard gates such that

c( X 7A,)C and € Y 1,8,)C

veV, pCé&;

correspond to 2 disjoint 1D Ising chains.
1 2 3 Ll = J
1 5e Gl O(L>) = O(N*?) 4(1‘4@5(-)

(@
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7 3 Y

0@ 1le 12 O 10(e, HC
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13 14 15 I
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DUALITY BETWEEN TORIC CODE AND CLASSICAL ISING CHAINS

MAIN RESULT . ;
For the 2D Toric Code in an L X L lattice, I -

there exists a quantum circuit C of complexity O(L">) such that T

c( Y 14,)C and €( Y, 1,8, )C

veV, pC&, _%
correspond to 2 disjoint 1D Ising chains. g ;Q-) 1
B e e A
16 ol:. ) @1}4//?_0

K-

CONSEQUENCE
The ground and Gibbs state of the 2D Toric Code can be prepared
with a gate complexity of O(L") for any 0 < 3 < 0.




DUALITY OF OTHER CSS CODES

CSS CODE

Hamiltonian — Y Jy Ay — »  J,B, A, = QR ol, Byi=QR)at.

veVr pPCEL i€ i€p

with more general geometries.



DUALITY OF OTHER CSS CODES

CSS CODE

Hamiltonian — Y Jy Ay — »  J,B, A, = QR ol, Byi=QR)at.

veVr pPCEL i€ i€p

with more general geometries.

T

Commuting Pauli operators H = ZaiHi~
1=1

with {H;} a collection of mutually orthogonal Pauli strings.



DUALITY OF OTHER CSS CODES

RQSUI.I' 1=1

The {H;} can be simultaneously diagonalised with a quantum circuit
of cuadratic depth.

[van den Berg, Temme, Quantum’20] [Aaronson, Gottesman, PRA04]



DUALITY OF OTHER CSS CODES

Result i—1

The {H;} can be simultaneously diagonalised with a quantum circuit
of cuadratic depth.

[van den Berg, Temme, Quantum’20] [Aaronson, Gottesman, PRA04]

Idea of the proof

Write interactions of the Hamiltonian in a tableau:

Operator|z;; | zi; S I'|'€S

110
7 01 l
A Interactions —}(X ‘ A ‘ 8)




DUALITY OF OTHER CSS CODES

Result i—1

The {H;} can be simultaneously diagonalised with a quantum circuit
of cuadratic depth.

[van den Berg, Temme, Quantum’20] [Aaronson, Gottesman, PRA04]

Idea of the proof

Write interactions of the Hamiltonian in a tableau:

Operator A5 | Zij Si.l-es Example

110 l
R 010[110/0
Oy 1|1 . 0. R0, 1 -0, 1K gy #
. lolo Interactions —>(X ‘ A ‘ 8) | (1 0 1{0 0 1 1)




DUALITY OF OTHER CSS CODES

Result H = Z o H;

The {H;} can be simultaneously diagonalised with a quantum circuit
of cuadratic depth.

Idea of the proof
Write interactions of the Hamiltonian in a tableau:

Sites Example

Q0,21 ©1®0, o0
o g Oy & L — Oy & 1L KX Ty
Interactions D& VA | | 101

Then, the aim is to reduce the X part of the matrix to all Os and
analyse the remaining Z part.

Operator |u@;; | zi;

110
0] 1
Ty 1|1
010

I 10

00 1L




DUALITY OF OTHER CSS CODES

Result H = Z o H;

The {H;} can be simultaneously diagonalised with a quantum circuit
of cuadratic depth.

Idea of the proof
Write interactions of the Hamiltonian in a tableau:

Then, the aim is to reduce the X part of the matrix to all Os and
analyse the remaining Z part.

For these models, this is done with CX, Hadamard and Phase gates in
O(n?) depth.



DUALITY OF OTHER CSS CODES

Result o — Z o H:

The {H;} can be simultaneously diagonalised with a quantum circuit
of cuadratic depth.

These shows that all Hamiltonians composed of commuting Pauli operators
are poly-depth dual to classical Hamiltonians.

Now the question is: To which classical Hamiltonians?



DUALITY OF OTHER CSS CODES

Example H = Z itli

If a tableau is achieved with Z part like

00

these are two decoupled 1D Ising models and two spins without interactions.



DUALITY OF OTHER CSS CODES

Example H = Z itli

If a tableau is achieved with Z part like

00

0---0[1---1] 00

these are two decoupled 1D Ising models and two spins without interactions.

This is achieved from a 2D Toric Code.



DUALITY OF OTHER CSS CODES

Original
model Lattice Hamiltonian Dual model
2D toric IO O — > Two dccoupled
code ' o | o i S A; 0. 0r —Y B, 0- 0. Ising chains
® Lo |
L—.——)-J Oxr -
X —X L — 7
Rotated oy YA, ‘ _ Y B ‘ Non-interacting,
surface . single-spin
code < ® ) N ‘/i Z é Hamiltonian
>~ o 2.0 | =D Z—1Z
X
- o, Two decoupled
: lasso Ising chains
2D color o o, 0" 0. " f)r
_ YA, _ S B.
code on a 2 Ai ‘ 2. Bi ‘ non-interacting,
noneycomb I T e single-spin
lattice op Oz

Hamiltonian.

Periodic
boundary
conditions

Open
boundary
conditions

Periodic
boundary
conditions



DUALITY OF OTHER CSS CODES

Original
model Lattice Hamiltonian Dual model
2D toric IO O — > Two dccoupled
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This is proven algorithmically for system sizes of order up to 10° qubits

and conjectured in general.
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Consequence: All these models can be efficiently sampled for any
0 < p < 0o, except for the 3D toric code, for which we only have

efficient sampling at 0 < f < p-.



CONCLUSIONS

® The Gibbs state of the 2D toric code is efficiently prepared at every positive temperature.

VIA DISSIPATION

Circuit depth  O(| A|polylog| A[, exp(f)) Circuit complexity  G(| A|*%)

VIA DUALITIES

Circuit complexity O(|A|*polylog|A|, exp(3))

® Other consequences, such as ® Very simple method and proof.
rapid loss of information. ® Applicable to other models.
® Applicable to other models. ® Sets the basis to possible extensions
® Sets the basis to possible extensions to to high-dimensional Paulis,
other Lindbladians and non-commutative Pauli strings, etc.

and non-commutative Hamiltonians
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