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Dynamic parameterized quantum circuits: expressive and barren-plateau free

Abhinav Deshpande, Marcel Hinsche, Sona Najafi, Kunal Sharma, Ryan Sweke,|Christa Zoufal

Classical optimization of parameterized quantum circuits is a widely studied methodology for the preparation of complex quantum states, as well as the solution of machine learning and
optimization problems. However, it is well known that many proposed parameterized quantum circuit architectures suffer from drawbacks which limit their utility, such as their classical
simulability or the hardness of optimization due to a problem known as "barren plateaus”. We propose and study a class of dynamic parameterized quantum circuit architectures. These
are parameterized circuits containing intermediate measurements and feedforward operations. In particular, we show that these architectures: 1. Provably do not suffer from barren
plateaus. 2. Are expressive enough to describe arbitrarily deep unitary quantum circuits. 3. Are competitive with state of the art methods for the preparation of ground states and facilitate
the representation of nontrivial thermal states. These features make the proposed architectures promising candidates for a variety of applications.
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Outlook

- Let’s explore dynamical ansatz classes

- Gibbs state preparation application

- Infidelity matching

- McLachlan’s variational principle
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Barren Plateaus (BPs)

IBM Quantum

Exponentially vanishing gradients < exponentially flat loss landscape

E, [9,L (w)] = 0

Var,, [0,L (w)] € O (i) , b>1

bn

n representing the number of qubits

Known causes

« Ansatz close to a t-design (13!

« Global observable [4-5]

 Extensive entanglement paired with partial traces [¢!

« Particular noise models 7!
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What are we looking for? IBM Quantum

Trainable model with efficient access to
non-exponentially vanishing gradients

Ansatz that is sufficiently expressive, i.e.,
capable of representing the target state

A system that is not trivially classically
simulable
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Our contribution IBMQuantum

Our model provably does not suffer from
barren plateaus given random initialisation

Numerical evidence that our model
can reliably represent interesting states

Proven worst-case hardness but (full
disclosure) the model is likely to be
average-case easy

Note: We can smoothly transition between provably barren plateau-free and provably hard settings
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Dynamic parameterized quantum circuit ansatz IBM Quantum

DPQC components 0) — L F(6) I—
« Parameterized (or 10) — ve) ve) be) - F(9) Vo | <
unparameterized) two-qubit U(6) U®)
unitary gates U(6) 10) — F(6) — i
« Parameterized no-nunitary single- U®) U(o) U(8)
qubit dynamic operations F(6) 10) —] 7(0) [ F9) [ =
U(o) u(o)
o) — —
Uu(e) ue) ()] U(o)
Probabilistic feedforward operation F 10) — 179 1
= Implemented via parameter 6
controlled non-unitary action such as 10) —| Rx(8) ’
areset —{F@O)— = X " F \
0 ., (0
F(6)(-) = cos® (f) I(-) + sin? (2—> F() F Ancilla controls probability
of implementing F
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Potential Applications 1BM Quantum

Ground state search:
Given that §,, represent the set of n —qubit quantum states and H an n —qubit Hamiltonian.

s [Hp]

Thermal state preparation:

Given an n-qubit Hamiltonian H and an inverse temperature S. Find the state that minimizes the free
. —BH

energy, I.e., Pgipps = T:[eTH]-
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What are
Dynamic Circuits?
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Regular quantum
circuit

» Unitary gates
* Final measurements

— - U4 I
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Dynamic circuit

Additional features:

Feedforward

Ua

Ua

U

Us

Ue
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What can we do with dynamic circuits?

Dynamic circuits can be vastly more
powerful than regular circuits.
Applications that require or can
benefit from dynamic circuits:

Quantum Error Correction

@ {s} 4 {S’}:l

{c} {o'}
L’——J
{00’}

Measurement-based
Quantum Computing

y Information flow
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Entanglement Routing Circuit Knitting
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Preparation of GHZ and other
topologically interesting
states
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Variational Ansatz
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Relation to existing non-unitary architectures IBM Quantum

Quantum convolutional neural networks (QCNNs)*:
Provable absence of barren plateaus?
Based on specific non-unitary operation =» a particular subset of the DPQC architectures (classically simulable)

Dissipative quantum neural networks?3:
Special cases of this form coincide with special cases of DPQC architectures (control over dissipative dynamics?)

PQCs subject to non-unital noise*:
Non-unital noise channels can be viewed as specific instances of the non-unitary operations allowed for in DPQC
architectures (lacking control over density, type, and application probability)

=>» Interpolation between expressive and BP-free case non-trivial or even impossible

layer 1 layer 2
Note: Similar DPQC architectures involving mid-circuit measurements 10) — 7@ : L
. . - . . . e I I
explored in terms of noise resilience (numerically)® and in terms of their ability | i
to use mid-circuit measurements for shallow state preparation® 10) — *, : [
I I
|0) — F(6) 0 FO) - —w
U;(@ 1 Us '
[1] Iris Cong, Soonwon Choi, and Mikhail D. Lukin. “Quantum Convolutional Neural Networks”. Nature Physics 15.12 (2019) |0> ] 1( ) ' 2( ) ! . EI
[2] Arthur Pesah,et al. “Absence of Barren Plateaus in Quantum Convolutional Neural Networks”. Physical Review X 11.4 (2021) I I
[3] Kerstin Beer, et al. “Training Deep Quantum Neural Networks”. Nature Communications 11.1 (2020) | |
[4] Antonio Anna Mele, et al. “Noise-Induced Shallow Circuits and Absence of Barren Plateaus”. arXiv:2403.13927 (2024) |0) — : ]-‘(0) ... —
[5] Yigal Ilin and Itai Arad. “Dissipative Variational Quantum Algorithms for Gibbs State Preparation”. arXiv:2407.09635 (2024) I I
[6] Yuxuan Yan, et al. “Variational LOCC-assisted Quantum Circuits for Long-Range Entangled States”. arXiv:2409.07281 (2024 |0> _ : : @
I I
I I
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Gradient Variance
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Feedforward distance IBM Quantum

Definition: el _.' 1 — [ =1 [
Shortest paths from a qubit measurement =1 1 1 e
to a feedforward operation through the 4 HH H H H
backwards light cone of the measurement
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The feedforward distance f describes the | H H HH K
maximum length of paths, over all qubits
on which the observable is supported.
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Gradient variance IBM Quantum

Ansatz: DPQC C(08) with random initialization, i.e., the parameters of the two-qubit gates U(68) are drawn from a locally
scrambling ensemble (also assuming Haar-random two-qubit gates)

Initial state: |0)(0|®"

Loss function: L(0) = Tr[HC(8)(|0)(0|®™)|with H corresponding to a k-local Hamiltonian

Theorem 1 (Absence of barren plateaus in DPQCs for k-local Hamiltonians — informal)
1 k(f+1)
Vars LO = (5 IHliks

with ||. ||4s representing the Hilbert-Schmidt norm and f the feedforward distance explained before.

IBM Quantum / © 2025 IBM Corporation



Noise-robustness of gradient variance IBM Quantum

Ansatz: DPQC C(08) with random initialization, i.e., the parameters of the two-qubit gates U(68) are drawn from a locally
scrambling ensemble (also assuming Haar-random two-qubit gates)

Initial state: |0)(0|®"
Noise: assuming a unital single-qubit noise channel after every operation introducing an average infidelity of ’2/—9 C(O)(.)

Loss function: L(0) = Tr[HC(B)(|0)(0|®")] with H corresponding to a k-local Hamiltonian

Theorem 2 (Noise robustness of Theorem 1 — informal)

(f+1)
(1-p)2\"
Varg L(6) = ( - IH]|%s

with ||. ||4s representing the Hilbert-Schmidt norm and f the feedforward distance explained before.
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Notes IBM Quantum

The absence of BPs does not imply trainability!

- It is not directly given that the optimal or even a good
solution may be found, if gradients do not vanish
exponentially.

The bounds are independent of the number of qubits

n and the depth d of the circuit. This fact is what enables
us to consider deep circuits of this form, restoring
expressivity.
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Expressivity
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Expressivity

Observation (Expressivity of DPQC architectures with probabilistic feedforward—informal).

Setting all the circuit parameters that control the probability of implementing an F gate to O = unitary ansatz

DPQC architecture € (@) with connectivity graph G and depth d with all feedforward probabilities set to O =»

architecture can realize all unitary operations of depth d on G.

It follows that one can in principle prepare interesting pure states using such an architecture.

IBM Quantum / © 2025 IBM Corporation
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Connecting expressivity and absence of BPs IBM Quantum

Observation (DPQC architectures: connecting expressivity and absence of BPs).

DPQC architectures allow one to interpolate smoothly between highly expressive unitary
architectures and BP-free nonunitary architectures with a constant feedforward depth!
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Hardness
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Worst-case hardness

10) — — —Qa
0 joy " I —3A
B 3 L — —@
|0) | QR

Avoid resets to have a deep, purely unitary circuit. ° 0 0
! p,l i .

We can tune the parameters to increase the number of PO : : P1
acting resets and, hence, control the information flow. O 0

IBM Quantum 31



What about average-case hardness?

All circuit instances
(Instances which are \ G]Stances which are \
easy to simulate easy to simu/bte\/“*
[ ]
\_ Y, _ >
a ) ( )
/\/—‘ *
[}

Instances which have Instances which have
non-negligible gradients non-negligible gradients
& Y, _ e
Possibility 1 Possibility 2

Possibility 1: classical computers are good enough to replicate all trainable variational quantum algorithms.

Possibility 2: quantum computers can genuinely help to reach parts of parameter or solution space that
classical algorithms cannot access by themselves.

IBM Quantum



Numerical Simulation Results




Thermal state preparation

XY-Model

B

\J
o
v Z
@

. = probabilistic feedforward

Model considered for a periodic 1D chain for up to 10 qubits and g = 2
Probabilistic feedforward operations F(p)(:) = cos? (Z—) (-) + sin? (’2’—) F()

Considered preparation protocols: fitting of infidelity to exact Gibbs state (not scalable), variational quantum imaginary
time evolution (prone to instabilities)

IBM Quantum
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Energy

Infidelity Training

1.00
el 0.08
— (2
0.75 G— 59 S’ o6
> d: 4 g :
) 0.50 d: 5 o /\
= . d: 6 E oo04 Nk
[ \ o P
- ' a7 c T ’ \ D
-1.0 \ : [ X /
0.25 \ d: 8 8 0.02 g /
3 d: 9 b,::"’/f\""\/
-15 0.00 D 0.00 —
0 25 50 75 100 125 150 0 25 50 75 100 125 150 0 25 50 75 100 125 150
Training Steps Training Steps Training Steps

The setting does not suffice the assumptions necessary to
guarantee our theoretical results!

We know from the infidelity fitting that our

— Energy converges i ansatz is sufficiently expressive to represent
- Infidelities approach the order of 10 the underlying thermal states!

- Gradient norm does not decrease significantly for larger d
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What depth do we need?

Infidelity

1.00 |

0.75 |

0.50

0.25

0.00

=3 32333 3.3

0 25 50 75 100 125 150

Training steps

= d = 2 seems to provide sufficient expressivity

IBM Quantum
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Variational Quantum Time Evolution H =Zeihi

Variational Ansatz

Y, (®) = U(w(t))]0)
Approach:

 State evolution - Parameter evolution with McLachlan [1]
* Minimize the error between the variational trajectory and the actual gradient using a constant depth Ansatz

Properties: S
* Ensuresthatw € R &
* In the case of real time evolution not necessarily energy preserving g}o o
* Unlike PFs: circuit depth does not (necessarily) increase with o) 1O S
the number time-steps and the locality of the system \.
TIT 0)- 08
[1] A variational solution of the time-dependent Schrédinger equation, A. McLachlan : |(:)>f () 0-8-  —
10)- 0)-10n-  —

IBM Quantum — Christa Zoufal ouf@Zurich.ibm.com 40



McLachlan’s Variational Principle R

Variational Ansatz
Quantum Imaginary Time Evolution Y (D) = U(w(t))|0)
= VarQITE

d
J ”(a?”’ ‘Et> e

(W (O] 0Py (1)) (P, (1) |1/Jw(t)) (Y, ()]
< 0, 0, o, [P (O (D) w; >a)] <a—H|¢w(t)>>

0(E, (1))

Quantum Geometric Tensor (QGT)
— Fjwj=—Re(C) %5,

prop. to the Quantum Fisher Information (QFI)

IBM Quantum — Christa Zoufal ouf@Zurich.ibm.com 41



Variational Quantum Imaginary Time Evolution

nfidelity

0.12 1

0.10 1

0.08 4

0.04 4

0.02 4

X p=025
x B=01

qubits, layers

ne{4,6,8,10}and 10 random seeds per setting

> Infidelities between the order of 1072 and 1071
- Energy match is not particularly good

- We observe better training behavior for larger temperatures. This is aligned with the expectation that

energy difference
o o b b — - N
w ~ o N w ~ o
o w o w o w o

o
N
u

g
=)
1)

Gibbs states are more difficult to prepare for lower temperatures

IBM Quantum

x B=025
1 x g=01 /

qubits, layers
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Caveats and criticisms

1. Small-scale experiments:
Number of system qubits at most 12 =» exponentially small gradient might not be very small

2. No shot noise
We use tensor network simulator to simplify the evaluation of expectation values =» no shot noise in
the numerics

3. No hardware noise:
Numerical simulations are not affected by the noise typically present in actual quantum hardware.
Robustness against hardware-induced noise unclear

4. Scalability vs. performance trade-off in thermal state preparation:
Thermal state preparations are either based on a cost function that requires the evaluation of the
fidelity (which does not scale) or an ODE-based approach (which does not perform as well as the

infidelity matching --> can further engineering help?)

Christa Zoufal — ouf@zurich.ibm.com 43



Conclusion

Trainable model with efficient access to
non-exponentially vanishing gradients

Ansatz that is sufficiently expressive, i.e.,
capable of representing the target state

A system that is not trivially classically
simulable

IBM Quantum / © 2025 IBM Corporation

IBM Quantum

BP-free for randomly initialized
parameter setting

Numerical indication of capability to rep-
resent interesting ground and thermal states

We know that the model can
represent non-trivial pure quantum states



Outlook

a.) Can we use make use of classical simulability in a training pipeline

that learns a ‘quantumly’ interesting state?

b. ) Identify and run minimaliviable hut interesting setting on quantum

hardware
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Stat-mech mapping
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Background: the stat-mech mapping

Assumption: circuit is composed of some entangling gates
(either fixed or random) interspersed with random single-qubit
gates.

We average over the choice of random single-qubit gates and
study statistical properties with respect to these averages,

denoted E-[].
0

First-moment quantities [E- Tr[p(8)0] can be studied by
0

evaluating E- [p(0)] = ZI—n
0

Next interesting quantities are second-moment ones of the
form E- Tr[p(6)0]?
6

Handle these via doubled Hilbert space:[EI(;Tr[p(@)O]2 =
Tr(E-[p(6)0 ® p(6)0]]
= Tr[E-[p(6) ® p(8)] - 0 ® O]]

0

IBM Quantum

It suffices to keep track of the evolution of
IEé [p(6) ® p(6)] =:p

When averaging the single-qubit gates over a 2-design, it is easy
to keep track of this object and derive simple rules describing
how it evolves.

Example: Single-qubit state p.

Performing the single-qubit average

Ey[(U® U)p®*(Ut @ UN)] > p = al +bS

where I = identity operator on doubled Hilbert space (dimension
4) and

0 0 O

S = , the SWAP operator.

o O O

0 0
1 0 0
0 0 1
Determine a and b through Trp = 4a + 2b = Trp®? and
TrpS = 2a + 4b = Tr[p®?2S] = Tr[p?]

W|N

: - I, 1 s
For pure states, this resultsin p = —- 4—+ I w



Background: the stat-mech mapping

Assumption: circuit is composed of some entangling gates
(either fixed or random) interspersed with random single-qubit
gates.

We average over the choice of random single-qubit gates and
study statistical properties with respect to these averages,

denoted E-[].
0

First-moment quantities [E- Tr[p(8)0] can be studied by
0

evaluating E- [p(0)] = ZI—n
0

Next interesting quantities are second-moment ones of the
form E- Tr[p(6)0]?
6

Handle these via doubled Hilbert space:[EI(;Tr[p(@)O]2 =
Tr(E-[p(6)0 ® p(6)0]]
= Tr[E-[p(6) ® p(8)] - 0 ® O]]

0

IBM Quantum

We want to keep track of the evolution of
IEé [p(6) ® p(6)] =:p

When averaging the single-qubit gates over a 2-design, it is easy
to keep track of this object and derive simple rules describing
how it evolves.

Example: Single-qubit state p.
Performing the single-qubit average

Ey[(UQ U)p®?(UT @ UN] > p=al +bS

where I = identity operator on doubled Hilbert space (dimension
4) and

1 0 0 O
(0 0 1 0

S = 010 0 , the SWAP operator.
0 0 0 1
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Stat-mech mapping

For any operation one can apply, if the operation is When applying an operation on, say, qubits i and j, it suffices to
sandwiched by single-qubit random gates, then the two-copy examine how the reduced density matrix on those two qubits
state always starts off and ends in the symmetric subspace evolves:

spanned by {1, S}". Tr(; jyePin = al; I+ D15, + €SI+ dS;S; —

Tr{i’j}cp'out = a’Iin + b’IiSj + c’Sin + d’SiSj.
Two copy state on 7 qubits may always be written as

1—x X 1—x X
_ I 1 S 1 I n S n a/ a
= T a(z) () e-o(a) (G) o] s
x€{0,1}" =T c for a transfer matrix T' whose rows add to (1...1).
_ 1- 1- : c
= X ¢, I'™1-51Q@... QI ™. 5%, interms of the g d
0,1}
el S 144 1§ 50
trace-1 operators I = —and S = —. >3 ) 10
4 7. _fooool . (% 50 . _|01
Haar — 00000 cz— 0 =2 L o single—qubit — 00
Interpret the above as a (quasi)probability distribution over o L 1 0 ; ; 1 00
“words” (since Trp = ) ¢, =1). 505 o 9

We can also take partial traces of these quantities and they

behave just as expected. References: [Hunter-Jones arXiv: 1905.12053]
[Dalzell et al., arXiv: 2011.12277] and [arXiv: 2111.14907]
[Napp arXiv:2203.06174]
[Ware et al. arXiv:2305.04954]
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Barren plateaus from the stat-mech model

Let’s understand the physics of the stat-mech model

-

_ 2 1
Initial state p = [ —I + —S

3 3

(, 4

L3

00

Local update: Ty, = 0 0

1

03

Variance of nonidentity Pauli observable supported on subset
J is proportional to the probability of ending in a string with all

SinJ.

\

nl= O O uls

- O O O

J

Expressivity-induced barren plateaus: For a sufficiently well-connected
architecture and deep unitary random circuits, the steady state is

n

ps = IT...T+
2+ 1 2+ 1
Haar-average on an arbitrary pure state)

SS...S (same as performing a global

— for deep random circuits, both local and global cost functions have
barren plateaus.

Noise-induced barren plateaus: in the presence of local unital noise, stat-
mech model has an additional update rule: S — (1 — y)S + y1.
= noise-induced barren plateaus as long as depth is Q(poly(n)).

Entanglement-induced barren plateaus: the weight of an S operator is
precisely proportional to the average local purity of the resulting state,
which in turn is related to the Rényi-2 entropy.
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[Zhang et al., PRL (2024)]

Absence of barren plateaus in finite local-depth
circuits with long-range entanglement

https://arxiv.org/pdf/2311.01393

(b)
Local Depth

—

-

(© .

DC FLDC GLDC
BP-free v v X
Area law v v X
LRE X v v
Non-classicality X v v

FIG. 1. (a) and (b) Typical examples of finite local-depth
circuits (FLDC) on 1D and 2D lattices, respectively. Darker
colors in (b) indicate later action orders. (c¢) Compares the
class of finite depth circuit (FDC), FLDC, and general linear
depth circuit (GLDC) in terms of whether they are in gen-
eral free from barren plateaus (BP), preserve entanglement
area law, generate long-range entanglement (LRE), and can
be simulated efficiently to compute local observable expecta-

tions by known classical methods (classicality). The inclusion
relation is FDC C FLDC < GLDC.



