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Outlook

- Let’s explore dynamical ansatz classes

- Gibbs state preparation application

- Infidelity matching

- McLachlan’s variational principle



Barren Plateaus (BPs)
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Exponentially vanishing gradients ↔ exponentially flat loss landscape 

representing the number of qubits <latexit sha1_base64="rua6xDSu53HexYaxPQDLaZYP2s8="></latexit>n
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Known causes

• Ansatz close to a t-design [1-3]

• Global observable [4-5]

• Extensive entanglement paired with partial traces [6]

• Particular noise models [7]

[1] J. McClean, et al., Nature Communications 9 (2018).
[2] Z. Holmes, et al., PRX Quantum 3 (2022).
[3] M. Larocca, et al., Quantum 6, 824 (2022).
[4] M. Cerezo, et al., Nature Communications 12 (2021).
[5] S. Thanasilp, et al., Quantum Machine Intelligence 5, 21 (2023).
[6] C. Ortiz Marrero, et al., PRX Quantum 2, 040316 (2021).
[7] S. Wang, et al., Nature Communications 12 (2021).



What are we looking for?
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Ansatz that is sufficiently expressive, i.e.,
capable of representing the target state

A system that is not trivially classically
simulable

Trainable model with efficient access to 
non-exponentially vanishing gradients



Our contribution
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Numerical evidence that our model 
can reliably represent interesting states

Proven worst-case hardness but (full 
disclosure) the model is likely to be 
average-case easy

Our model provably does not suffer from 
barren plateaus given random initialisation

Note: We can smoothly transition between provably barren plateau-free and provably hard settings



Dynamic parameterized quantum circuit ansatz
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DPQC components

• Parameterized (or 
unparameterized) two-qubit 
unitary gates 𝑈 𝜃

• Parameterized no-nunitary single-
qubit dynamic operations ℱ(𝜃)

Probabilistic feedforward operation 𝐹
è Implemented via parameter 𝜃
controlled non-unitary action such as 
a reset

ℱ 𝜃 ' = cos!
𝜃
2 𝕀 ' + sin!

𝜃
2 𝐹 '

𝐹
𝐹

Ancilla controls probability 
of implementing 𝐹



Potential Applications
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Thermal state preparation:
Given an 𝑛-qubit Hamiltonian 𝐻 and an inverse temperature 𝛽. Find the state that minimizes the free 
energy, i.e., 𝜌"#$$% =

&"#$

'( &"#$
.

Ground state search: 
Given that 𝒮) represent the set of 𝑛 −qubit quantum states and 𝐻 an 𝑛 −qubit Hamiltonian. 

min
*∈𝒮%

𝑇𝑟[𝐻𝜌]

Quantum process learning:
Let ℑ) be the set of all 𝑛-qubit channels and 𝑑♢ a distance induced by the diamond norm. Then, we are 
looking for an accessible channel 𝑇- ∈ ℑ) which minimizes 𝑑♢(𝑇, 𝑇′) the to a target channel 𝑇 ∈ ℑ).



Regular quantum 
circuit

• Unitary gates
• Final measurements

Dynamic circuit

Additional features:

• Mid-circuit 
measurements

• Real-time classical 
computing

• Feedforward

IBM Quantum / © 2025 IBM Corporation

What are 
Dynamic Circuits?



Variational AnsatzPreparation of GHZ and other 
topologically interesting 
states

Circuit KnittingEntanglement Routing

Quantum Error CorrectionWhat can we do with dynamic circuits? Quantum Error Correction

Circuit Knitting

Dynamic circuits can be vastly more 
powerful than regular circuits. 
Applications that require or can 
benefit from dynamic circuits: 

teleport gates 

...

{s}

{σ} {σ′ }

{s′ }

{σσ′ }
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Measurement-based 
Quantum Computing

[Bäumer et al., PRX Quantum 5, 030339 (2024)]

[Raussendorf and Briegel, PRL 86, 5188 (2001)]



Relation to existing non-unitary architectures
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Quantum convolutional neural networks (QCNNs)1: 
Provable absence of barren plateaus2

Based on specific non-unitary operation è a particular subset of the DPQC architectures (classically simulable)

Dissipative quantum neural networks3:
Special cases of this form coincide with special cases of DPQC architectures (control over dissipative dynamics?)

PQCs subject to non-unital noise4:
Non-unital noise channels can be viewed as specific instances of the non-unitary operations allowed for in DPQC 
architectures (lacking control over density, type, and application probability)

è Interpolation between expressive and BP-free case non-trivial or even impossible

[1] Iris Cong, Soonwon Choi, and Mikhail D. Lukin. “Quantum Convolutional Neural Networks”. Nature Physics 15.12 (2019)
[2] Arthur Pesah,et al. “Absence of Barren Plateaus in Quantum Convolutional Neural Networks”. Physical Review X 11.4 (2021)
[3] Kerstin Beer, et al. “Training Deep Quantum Neural Networks”. Nature Communications 11.1 (2020)
[4] Antonio Anna Mele, et al. “Noise-Induced Shallow Circuits and Absence of Barren Plateaus”. arXiv:2403.13927 (2024)
[5] Yigal Ilin and Itai Arad. “Dissipative Variational Quantum Algorithms for Gibbs State Preparation”. arXiv:2407.09635 (2024)
[6] Yuxuan Yan, et al. “Variational LOCC-assisted Quantum Circuits for Long-Range Entangled States”. arXiv:2409.07281 (2024

Note: Similar DPQC architectures involving mid-circuit measurements 
explored in terms of noise resilience (numerically)5 and in terms of their ability 
to use mid-circuit measurements for shallow state preparation6



Gradient Variance
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Feedforward distance

IBM Quantum / © 2025 IBM Corporation

Definition:
Shortest paths from a qubit measurement 
to a feedforward operation through the 
backwards light cone of the measurement 

The feedforward distance 𝑓 describes the 
maximum length of paths, over all qubits 
on which the observable is supported. 



Gradient variance
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Ansatz: DPQC 𝐶 𝜽 with random initialization, i.e., the parameters of the two-qubit gates 𝑈(𝜃) are drawn from a locally 
scrambling ensemble

Initial state: |0⟩⟨0|⊗'

Loss function: Tr 𝐻𝐶 𝜽 (|0⟩⟨0|⊗') with 𝐻 corresponding to a 𝑘-local Hamiltonian

Ansatz: DPQC 𝐶 𝜽 with random initialization, i.e., the parameters of the two-qubit gates 𝑈(𝜃) are drawn from a locally 
scrambling ensemble (also assuming Haar-random two-qubit gates)

Initial state: |0⟩⟨0|⊗'

Loss function: L 𝜽 = Tr 𝐻𝐶 𝜽 (|0⟩⟨0|⊗') with 𝐻 corresponding to a 𝑘-local Hamiltonian

Theorem 1 (Absence of barren plateaus in DPQCs for k-local Hamiltonians – informal) 

𝑉𝑎𝑟𝜽 𝐿 𝜽 ≥
1
5

) *+,
𝐻 -.

!

with . -.
! representing the Hilbert-Schmidt norm and 𝑓 the feedforward distance explained before.



Noise-robustness of gradient variance
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Ansatz: DPQC 𝐶 𝜽 with random initialization, i.e., the parameters of the two-qubit gates 𝑈(𝜃) are drawn from a locally 
scrambling ensemble

Initial state: |0⟩⟨0|⊗'

Loss function: Tr 𝐻𝐶 𝜽 (|0⟩⟨0|⊗') with 𝐻 corresponding to a 𝑘-local Hamiltonian

Ansatz: DPQC 𝐶 𝜽 with random initialization, i.e., the parameters of the two-qubit gates 𝑈(𝜃) are drawn from a locally 
scrambling ensemble (also assuming Haar-random two-qubit gates)

Initial state: |0⟩⟨0|⊗'

Noise: assuming a unital single-qubit noise channel after every operation introducing an average infidelity of /
!
à E𝐶 𝜽 ( . )

Loss function: L 𝜽 = Tr 𝐻𝐶 𝜽 (|0⟩⟨0|⊗') with 𝐻 corresponding to a 𝑘-local Hamiltonian

Theorem 2 (Noise robustness of Theorem 1 – informal) 

𝑉𝑎𝑟𝜽 𝐿 𝜽 ≥
1− 𝛾 !

5

) *+,

𝐻 -.
!

with . -.
! representing the Hilbert-Schmidt norm and 𝑓 the feedforward distance explained before.



Notes
The absence of BPs does not imply trainability!

à It is not directly given that the optimal or even a good
solution may be found, if gradients do not vanish 
exponentially.

The bounds are independent of the number of qubits 
𝒏 and the depth 𝒅 of the circuit. This fact is what enables 
us to consider deep circuits of this form, restoring 
expressivity.

Proof idea of this result relies on the stat-mech model:
Analysis of a biased random walk over a configuration 
space of identity and swap operators, interpreted
as bitstrings 0, 1 '. 

à Variance of the loss function is related to the 
probability of obtaining a significant number of 1s, or 
large Hamming weight in the output of the random walk.

IBM Quantum / © 2025 IBM Corporation



Expressivity
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Expressivity
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Observation (Expressivity of DPQC architectures with probabilistic feedforward—informal). 

Setting all the circuit parameters that control the probability of implementing an 𝐹 gate to 0 è unitary ansatz

DPQC architecture 𝐶(𝜽)with connectivity graph 𝐺 and depth 𝑑 with all feedforward probabilities set to 0 è
architecture can realize all unitary operations of depth 𝑑 on 𝐺.

It follows that one can in principle prepare interesting pure states using such an architecture.

𝓕(𝟎)

𝓕(𝟎)

𝓕(𝟎)

𝓕(𝟎)

𝓕(𝟎)

𝓕(𝟎)



Connecting expressivity and absence of BPs
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Observation (DPQC architectures: connecting expressivity and absence of BPs). 

DPQC architectures allow one to interpolate smoothly between highly expressive unitary 
architectures and BP-free nonunitary architectures with a constant feedforward depth!



Hardness
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Worst-case hardness

Avoid resets to have a deep, purely unitary circuit.

We can tune the parameters to increase the number of 
acting resets and, hence, control the information flow.

IBM Quantum

𝑈O 𝑈P 𝑈Q ᠁

|0⟩

|0⟩

|0⟩

|0⟩
|0⟩
|0⟩
|0⟩
|0⟩
|0⟩
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What about average-case hardness?

Possibility 1: classical computers are good enough to replicate all trainable variational quantum algorithms.

Possibility 2: quantum computers can genuinely help to reach parts of parameter or solution space that 
classical algorithms cannot access by themselves.

IBM Quantum



Numerical Simulation Results
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Thermal state preparation

IBM Quantum

XY-Model

𝐻012 = −R
34,

' 3
4𝑋3𝑋3+, +

1
4𝑌3𝑌3+, −

1
2R34,

'
𝑍3

Model considered for a periodic 1D chain for up to 10 qubits and 𝛽 = 2
Probabilistic feedforward operations ℱ 𝑝 ' = cos! 5

!
' + sin! 5

!
𝐹 '

Considered preparation protocols: fitting of infidelity to exact Gibbs state (not scalable), variational quantum imaginary 
time evolution (prone to instabilities)
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Infidelity Training

IBM Quantum

The setting does not suffice the assumptions necessary to
guarantee our theoretical results!

à Energy converges
à Infidelities approach the order of 10!"
à Gradient norm does not decrease significantly for larger 𝑑

We know from the infidelity fitting that our 
ansatz is sufficiently expressive to represent 
the underlying thermal states! 
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What depth do we need?

IBM Quantum

è 𝑑 = 2 seems to provide sufficient expressivity



Variational Quantum Time Evolution
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Approach:
• State evolution à Parameter evolution with McLachlan [1]
• Minimize the error between the variational trajectory and the actual gradient using a constant depth Ansatz

Properties:
• Ensures that 𝜔 ∈ ℝ
• In the case of real time evolution not necessarily energy preserving
• Unlike PFs: circuit depth does not (necessarily) increase with 

the number time-steps and the locality of the system

𝐻 =R
6

𝜃6ℎ6

Variational Ansatz
𝜓𝝎 𝑡 = 𝑈 𝜔 𝑡 |0⟩

[1] A variational solution of the time-dependent Schrödinger equation, A. McLachlan

θ0

θ1

θn

|0〉

|0〉

|0〉

|0〉

|0〉

|0〉

|φ(θ)〉 = U(θ)|0〉g(θ)θ̇ = b(θ)

g(θ)θ̇
= b(θ)

|ψ(τ )〉 ≈ |φ(θ(τ ))〉|ψ0〉

−
H
|ψ
0
〉

|ψ(τ )〉 ≈ |φ(θ(τ ))〉



Quantum Imaginary Time Evolution
è VarQITE

𝛿𝛿
𝜕
𝜕𝑡 +𝐻 −𝐸8 𝜓𝝎 𝑡

!
= 0

Re
𝜕 𝜓𝝎 𝑡
𝜕𝜔6

𝜕 𝜓𝝎 𝑡
𝜕𝜔3

−
𝜕 𝜓𝝎 𝑡
𝜕𝜔6

|𝜓𝝎 𝑡 ⟩⟨𝜓 𝑡 |
𝜕 𝜓𝝎 𝑡
𝜕𝜔3

𝜔̇3 = −Re
𝜕 𝜓𝝎 𝑡
𝜕𝜔6

𝐻 𝜓𝝎 𝑡

𝐹63
9𝜔̇3 = −Re 𝐶6

McLachlan’s Variational Principle

IBM Quantum – Christa Zoufal ouf@Zurich.ibm.com 41

𝐻 =R
6

𝜃6ℎ6

Variational Ansatz
𝜓𝝎 𝑡 = 𝑈 𝜔 𝑡 |0⟩

∝ "⟨$! % ⟩
"'"

Quantum Geometric Tensor (QGT)
prop. to the Quantum Fisher Information (QFI)
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Variational Quantum Imaginary Time Evolution

IBM Quantum

n ∈ {4, 6, 8, 10} and 10 random seeds per setting

à Infidelities between the order of 10!# and 10!$
à Energy match is not particularly good
à We observe better training behavior for larger temperatures. This is aligned with the expectation that 
Gibbs states are more difficult to prepare for lower temperatures
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Caveats and criticisms
1. Small-scale experiments: 

Number of system qubits at most 12 è exponentially small gradient might not be very small

2. No shot noise

We use tensor network simulator to simplify the evaluation of expectation values è no shot noise in 

the numerics

3. No hardware noise: 

Numerical simulations are not affected by the noise typically present in actual quantum hardware. 

Robustness against hardware-induced noise unclear 

4. Scalability vs. performance trade-off in thermal state preparation: 

Thermal state preparations are either based on a cost function that requires the evaluation of the 

fidelity (which does not scale) or an ODE-based approach (which does not perform as well as the 

infidelity matching --> can further engineering help?)

Christa Zoufal – ouf@zurich.ibm.com



Conclusion
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Ansatz that is sufficiently expressive, i.e.,
capable of representing the target state

A system that is not trivially classically
simulable

Trainable model with efficient access to 
non-exponentially vanishing gradients
Trainable model with efficient access to 
non-exponentially vanishing gradients

BP-free for randomly initialized 
parameter setting

Numerical indication of capability to rep-
resent interesting ground and thermal states

We know that the model can
represent non-trivial pure quantum states



Experiments
Model
Size: 16 qubits
Generator: EfficientSU2 (pairwise entanglement, depth 1), parameters uniformly initialized in −𝜋, 𝜋
Discriminator: fully-connected, 192 nodes, leaky-ReLU hidden activation, parameter initialization Kaiming uniform 
2×𝜎

IBM Quantum / © 2023 IBM Corporation
Target PDF Trained PDF

Outlook

a.) Can we use make use of classical simulability in a training pipeline 

that learns a ‘quantumly’ interesting state?

b. ) Identify and run minimal viable but interesting setting on quantum 

hardware
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Stat-mech mapping
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It suffices to keep track of the evolution of 
𝔼
%
⃗ [𝜌(𝜃)⊗𝜌(𝜃)] =: 𝜌

When averaging the single-qubit gates over a 2-design, it is easy 
to keep track of this object and derive simple rules describing 
how it evolves.

Example: Single-qubit state 𝜌.
Performing the single-qubit average 
𝔼&[(𝑈⊗𝑈)𝜌⊗#(𝑈(⊗𝑈()]è 𝜌 = 𝑎𝐼 + 𝑏𝑆
where 𝐼 = identity operator on doubled Hilbert space (dimension 
4) and

𝑆 =
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

, the SWAP operator.

Determine 𝑎 and 𝑏 through Tr𝜌 = 4𝑎 + 2𝑏 = Tr𝜌⊗# and 
Tr𝜌𝑆 = 2𝑎 + 4𝑏 = Tr[𝜌⊗#𝑆] = Tr[𝜌#]

For pure states, this results in 𝜌 = #
)
⋅ *
+
+ $

)
⋅ ,
#
.

Background: the stat-mech mapping

Assumption: circuit is composed of some entangling gates 
(either fixed or random) interspersed with random single-qubit 
gates.

We average over the choice of random single-qubit gates and 
study statistical properties with respect to these averages, 
denoted 𝔼

%
⃗ [].

First-moment quantities 𝔼
%
⃗Tr[𝜌(𝜃)𝑂] can be studied by 

evaluating 𝔼
%
⃗ [𝜌(𝜃)] = *

#%
.

Next interesting quantities are second-moment ones of the 
form 𝔼

%
⃗Tr[𝜌(𝜃)𝑂]#

Handle these via doubled Hilbert space:𝔼
%
⃗Tr[𝜌(𝜃)𝑂]# =

Tr[𝔼
%
⃗ [𝜌(𝜃)𝑂⊗𝜌(𝜃)𝑂]]

= Tr[𝔼
%
⃗ [𝜌(𝜃)⊗𝜌(𝜃)] ⋅ 𝑂⊗𝑂]]

IBM Quantum
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We want to keep track of the evolution of 
𝔼
%
⃗ [𝜌(𝜃)⊗𝜌(𝜃)] =: 𝜌

When averaging the single-qubit gates over a 2-design, it is easy 
to keep track of this object and derive simple rules describing 
how it evolves.

Example: Single-qubit state 𝜌.
Performing the single-qubit average 

𝔼&[(𝑈⊗𝑈)𝜌⊗#(𝑈(⊗𝑈()]è 𝜌 = 𝑎𝐼 + 𝑏𝑆

where 𝐼 = identity operator on doubled Hilbert space (dimension 
4) and

𝑆 =
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

, the SWAP operator.

Background: the stat-mech mapping

Assumption: circuit is composed of some entangling gates 
(either fixed or random) interspersed with random single-qubit 
gates.

We average over the choice of random single-qubit gates and 
study statistical properties with respect to these averages, 
denoted 𝔼

%
⃗ [].

First-moment quantities 𝔼
%
⃗Tr[𝜌(𝜃)𝑂] can be studied by 

evaluating 𝔼
%
⃗ [𝜌(𝜃)] = *

#%
.

Next interesting quantities are second-moment ones of the 
form 𝔼

%
⃗Tr[𝜌(𝜃)𝑂]#

Handle these via doubled Hilbert space:𝔼
%
⃗Tr[𝜌(𝜃)𝑂]# =

Tr[𝔼
%
⃗ [𝜌(𝜃)𝑂⊗𝜌(𝜃)𝑂]]

= Tr[𝔼
%
⃗ [𝜌(𝜃)⊗𝜌(𝜃)] ⋅ 𝑂⊗𝑂]]

IBM Quantum







[Zhang et al., PRL (2024)]

Absence of barren plateaus in finite local-depth 
circuits with long-range entanglement

https://arxiv.org/pdf/2311.01393


