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Statistical-Computational Gaps

What makes Gibbs state preparation hard?
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Statistical-Computational Gaps

Canonical example of an NP-hard optimization problem: MAX-CLIQUE

▶ Given a graph on n vertices, what is its largest clique?
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Statistical-Computational Gaps

PCP theorem: MAX-CLIQUE is even hard to approximate

Theorem (D. Zuckerman, Theory Comput. 3, 103 (2007))

For any ϵ > 0 it is NP-hard to approximate MAX-CLIQUE to an approximation
ratio 1

n1−ϵ

▶ Even a trivial clique of a single vertex achieves 1
n—you can’t do much better!
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Statistical-Computational Gaps

▶ Complexity theory gives us hardness for adversarially chosen examples
▶ For an Erdős–Rényi graph ∼ G

(
n, 12

)
, MAX-CLIQUE ∼ 2 log2 (n) w.h.p.

▶ Trivial cliques achieve an approximation ratio ∼ 1
2 log2(n)

, already beating what PCP

tells us for worst-case instances!
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Statistical-Computational Gaps

In fact, we can do better than a factor-2 log2 (n) approximation:1

1. Choose a random vertex v .

2. Throw away the vertices not adjacent to v .

3. Repeat.

1R. M. Karp, tech. rep. UCB/ERL M581 (1976)
7 / 28



Statistical-Computational Gaps

In fact, we can do better than a factor-2 log2 (n) approximation:1

1. Choose a random vertex v .

2. Throw away the vertices not adjacent to v .

3. Repeat.

For a graph ∼ G
(
n, 12

)
, you throw away roughly half of the vertices each time, giving a

clique of size ∼ log2 (n). . .

. . . and typically achieving an approximation ratio of 1
2 !

1R. M. Karp, tech. rep. UCB/ERL M581 (1976)
7 / 28



Statistical-Computational Gaps

In fact, we can do better than a factor-2 log2 (n) approximation:1

1. Choose a random vertex v .

2. Throw away the vertices not adjacent to v .

3. Repeat.

For a graph ∼ G
(
n, 12

)
, you throw away roughly half of the vertices each time, giving a

clique of size ∼ log2 (n). . .

. . . and typically achieving an approximation ratio of 1
2 !

1R. M. Karp, tech. rep. UCB/ERL M581 (1976)
7 / 28



Statistical-Computational Gaps

In fact, we can do better than a factor-2 log2 (n) approximation:1

1. Choose a random vertex v .

2. Throw away the vertices not adjacent to v .

3. Repeat.

For a graph ∼ G
(
n, 12

)
, you throw away roughly half of the vertices each time, giving a

clique of size ∼ log2 (n). . .

. . . and typically achieving an approximation ratio of 1
2 !

A similar story holds if one is interested in sampling from the Boltzmann distribution of
configurations

1R. M. Karp, tech. rep. UCB/ERL M581 (1976)
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Statistical-Computational Gaps

Can we do even better?
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Statistical-Computational Gaps

Can we do even better?

Even after 50 years, no. :(
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Statistical-Computational Gaps

MAX-CLIQUE is the classic example of a statistical-computational gap in a
maximization problem:

▶ Statistically, we know what the maximum is without doing any work!

▶ Computationally, we know of no efficient algorithms outputting the argmax
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Statistical-Computational Gaps

Without complexity theory, how can we characterize problems exhibiting
statistical-computational gaps?
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The Overlap Gap Property

Generally, consider an energy function E ∼ F :

z∗ := argmax
z∈{0,1}×n

E (z) ,

E ∗ = E (z∗) .
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The Overlap Gap Property

Generally, consider a combinatorial optimization problem E ∼ F :

z∗ := argmax
z∈{0,1}×n

E (z) ,

E ∗ = E (z∗) .

Consider space of high-value points:

SE
µ :=

{
z ∈ {0, 1}×n : E (z) ≥ µE ∗}

11 / 28



The Overlap Gap Property

E satisfies the overlap gap property (OGP) with parameters (µ, ν1, ν2) if w.h.p.:{
(x , y) ∈ SE

µ × SE
µ : dH (x , y) ∈ [ν1n, ν2n]

}
= ∅

}
𝜈1

}

𝜈
2
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The (Ensemble) Overlap Gap Property

E satisfies the ensemble overlap gap property (e-OGP) with parameters (µ, ν1, ν2) if
w.h.p.: {

(x , y) ∈ SE
µ × SE ′

µ : dH (x , y) ∈ [ν1n, ν2n]
}
= ∅

}
𝜈1

}

𝜈
2
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The (Ensemble) Overlap Gap Property

Why does the e-OGP obstruct algorithms?

▶ Independent instances have distant high-energy configurations

▶ By e-OGP, interpolations between independent instances have clustered solutions

▶ Algorithms have to “jump the gap” at some point along any interpolation path;
Lipschitz algorithms can’t do this!

}
𝜈1

}

𝜈
2
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Sampling

The OGP also implies a dynamical spin glass transition at low temperatures2

Support of Boltzmann distribution “shatters” into exponentially many states. . .

=⇒ slow mixing from a worst-case starting point due to extensive free energy wells

2D. Gamarnik et al., Probab. Theory Relat. Fields 193, 89 (2025)
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Classical Problems

In practice, OGP matches performance of best computationally efficient algorithms
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A Quantum OGP?

Is there a quantum OGP for Hamiltonians?

H =
∑
E

E |E ⟩ ⟨E |

▶ This would tell us when we have slow mixing, easy-to-prepare low-energy states,
quantum memories, . . .
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A Quantum OGP?

H =
∑
E

E |E ⟩ ⟨E |

Unfortunately, immediately run into issues. . .

▶ If |E ⟩ and |E ′⟩ are high energy, so is:

|t⟩ :=
√
t |E ⟩+

√
1− t

∣∣E ′〉
for all t; how can high-energy states be “gapped”?

▶ Of course algorithms preparing low-energy |E ⟩ are inefficient; even reading out E
can be inefficient quantumly!
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A Quantum OGP?

How do we get circumvent this?
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A Quantum OGP?
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The Commutation Index

▶ Previous work showed quantum complementarity implies the absence of a spin
glass transition3. . .

▶ For:

H =
1√
m

m∑
k=1

JkAk ,

define the commutation index as:

∆H = sup
∥|ψ⟩∥2=1

1

m

m∑
k=1

⟨ψ|Ak |ψ⟩2 .

If ∆H → 0 asymptotically, H has no spin glass phase at constant temperature

▶ ∆−1
H is exactly* the sample complexity of learning {⟨Ak⟩}k in a state4

3ERA et al., Phys. Rev. Lett. 135, 030602 (2025)
4S. Chen et al., arXiv:2404.19105
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The Quantum OGP

This motivates the following definition of a quantum OGP:

Definition (Quantum OGP, informal)

We say H satisfies the quantum OGP with parameters (µ, ν1, ν2) if:

1. ∆H ̸→ 0

2. The classical shadows estimator 1
R

∑R
r=1 EH (yr ) exhibits a classical OGP with

parameters (µ, ν1, ν2)

▶ EH is a classical disordered model with only a constant volume overhead iff
∆H ̸→ 0!
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The Quantum OGP

First main result: quantum OGP satisfied by sparsified quantum p-spin model:

Hp :=
1√(n
p

) ∑
i∈([n]p )

∑
b∈{1,2,3}p

Ji ,bσ
(b)
i
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The Quantum OGP Implies Algorithmic Hardness

Second main result: the quantum OGP implies hardness for stable classical and
quantum algorithms!

Theorem (Quantum OGP obstructs stable algorithms, informal)

Let A be a stable algorithm, i.e.,

dW2 (A (X ) ,A (Y )) ≤ L ∥X − Y ∥1 (1)

for any L = O(1) and X ,Y the Hamiltonian coefficients. A cannot achieve an
approximation ratio µ if the problem class satisfies the quantum OGP with parameters
(µ− δ, ν1, ν2) for some δ > 0.
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Stable Algorithms

dW2 is the quantum Wasserstein distance5

▶ Roughly, states which differ by a k-local operation differ in quantum Wasserstein
distance by O (k)

▶ Generalizes Hamming distance & classical Wasserstein distance, so this
generalizes classical notions of stability6

5G. De Palma et al., IEEE Trans. Inf. Theory 67, 6627 (2021)
6D. Gamarnik et al., in FOCS (2022); A. El Alaoui et al., Commun. Math. Phys. 406, 1 (2025)
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Stable Algorithms

Examples of algorithms stable under quantum Wasserstein distance:

▶ Algorithms Lipschitz in gate complexity (quantum or classical)

▶ log (n)-time Lindbladian evolution (from any initial state)

▶ log (n)-depth quantum neural networks (variational quantum algorithms)

▶ Phase estimation to log (n) bits of precision

▶ See paper for more!
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Outlook

In conclusion, we have. . .

▶ . . . constructed a way to characterize glassiness in quantum systems

▶ . . . ruled out well-known classical and quantum algorithms for near-ground state
preparation of disordered k-spin models

▶ . . . connected average-case hardness to the efficiency of learning

Ideas have since already been used for other settings and algorithms
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Outlook

Where do we go from here?

▶ Can one construct general quantum “bottleneck” theorems?7

▶ Quantum algorithms achieving optimal performance? (Algorithmic universality8)

▶ Finite dimensional or sparse models?

7D. Gamarnik et al., arXiv:2411.04300; T. Rakovszky et al., arXiv:2412.09598
8H. E. Cheairi and D. Gamarnik, arXiv:2412.18014
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Questions?

Thank you!

arXiv:2505.00087 [quant-ph] and arXiv:2510.08497 [quant-ph]
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