

Average-case quantum complexity from glassiness

Eric R. Anschuetz

eans@caltech.edu

December 9, 2025

arXiv:2505.00087 [quant-ph] and arXiv:2510.08497 [quant-ph]

What makes Gibbs state preparation hard?

What makes optimization hard?

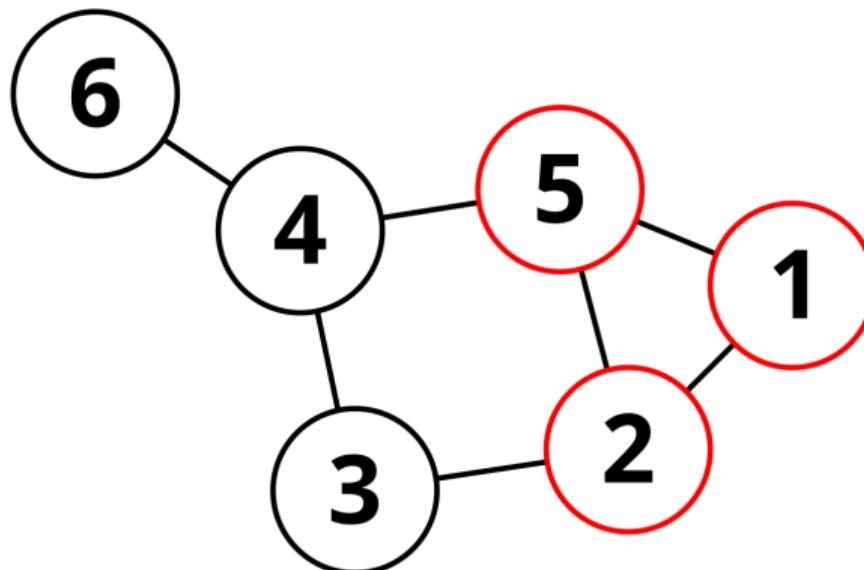
What makes optimization hard?

(or, why complexity theory can be misleading)

Statistical-Computational Gaps

Canonical example of an NP-hard optimization problem: MAX-CLIQUE

- ▶ Given a graph on n vertices, what is its largest clique?



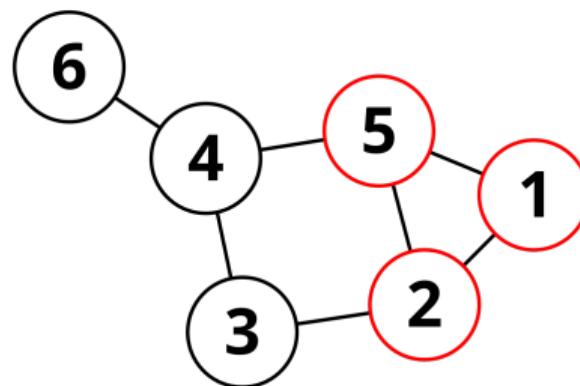
Statistical-Computational Gaps

PCP theorem: MAX-CLIQUE is even hard to *approximate*

Theorem (D. Zuckerman, Theory Comput. 3, 103 (2007))

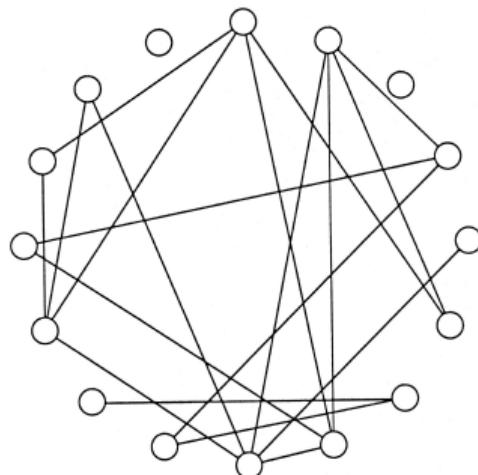
For any $\epsilon > 0$ it is NP-hard to approximate MAX-CLIQUE to an approximation ratio $\frac{1}{n^{1-\epsilon}}$

- ▶ Even a trivial clique of a single vertex achieves $\frac{1}{n}$ —you can't do much better!



Statistical-Computational Gaps

- ▶ Complexity theory gives us hardness for *adversarially chosen* examples
- ▶ For an Erdős–Rényi graph $\sim G(n, \frac{1}{2})$, MAX-CLIQUE $\sim 2 \log_2(n)$ w.h.p.
 - ▶ Trivial cliques achieve an approximation ratio $\sim \frac{1}{2 \log_2(n)}$, already beating what PCP tells us for worst-case instances!



Statistical-Computational Gaps

In fact, we can do better than a factor- $2 \log_2(n)$ approximation:¹

1. Choose a random vertex v .
2. Throw away the vertices not adjacent to v .
3. Repeat.

¹R. M. Karp, tech. rep. UCB/ERL M581 (1976)

Statistical-Computational Gaps

In fact, we can do better than a factor-2 $\log_2(n)$ approximation:¹

1. Choose a random vertex v .
2. Throw away the vertices not adjacent to v .
3. Repeat.

For a graph $\sim G(n, \frac{1}{2})$, you throw away roughly half of the vertices each time, giving a clique of size $\sim \log_2(n)$...

¹R. M. Karp, tech. rep. UCB/ERL M581 (1976)

Statistical-Computational Gaps

In fact, we can do better than a factor-2 $\log_2(n)$ approximation:¹

1. Choose a random vertex v .
2. Throw away the vertices not adjacent to v .
3. Repeat.

For a graph $\sim G(n, \frac{1}{2})$, you throw away roughly half of the vertices each time, giving a clique of size $\sim \log_2(n)$...

... and typically achieving an approximation ratio of $\frac{1}{2}$!

¹R. M. Karp, tech. rep. UCB/ERL M581 (1976)

Statistical-Computational Gaps

In fact, we can do better than a factor-2 $\log_2(n)$ approximation:¹

1. Choose a random vertex v .
2. Throw away the vertices not adjacent to v .
3. Repeat.

For a graph $\sim G(n, \frac{1}{2})$, you throw away roughly half of the vertices each time, giving a clique of size $\sim \log_2(n)$...

... and typically achieving an approximation ratio of $\frac{1}{2}$!

A similar story holds if one is interested in sampling from the Boltzmann distribution of configurations

¹R. M. Karp, tech. rep. UCB/ERL M581 (1976)

Statistical-Computational Gaps

Can we do *even better*?

Statistical-Computational Gaps

Can we do even *better*?

The Largest Clique of a Random Graph: The Most "Embarrassing" Open Problem in Random Structures

Imagine a club with N members, in which about 50% of the $N(N-1)/2$ member pairs know each other personally, and the remaining 50% of the members do not. You want to find a largest clique in this club, namely, the largest group of members out of the N members who all know each other. What is the typical size c^* of such a clique? How easy is it to find one? This question can

Even after 50 years, no. :(

Statistical-Computational Gaps

MAX-CLIQUE is the classic example of a *statistical-computational gap* in a maximization problem:

- ▶ *Statistically*, we know what the maximum is without doing any work!
- ▶ *Computationally*, we know of no efficient algorithms outputting the arg max

Statistical-Computational Gaps

Without complexity theory, how can we characterize problems exhibiting statistical-computational gaps?

Statistical-Computational Gaps

Without complexity theory, how can we characterize problems exhibiting statistical-computational gaps?

The overlap gap property: A topological barrier to optimizing over random structures

David Gamarnik^{a,b,1}

The Overlap Gap Property

Generally, consider an energy function $E \sim \mathcal{F}$:

$$\begin{aligned} \mathbf{z}^* &:= \arg \max_{\mathbf{z} \in \{0,1\}^{\times n}} E(\mathbf{z}), \\ E^* &= E(\mathbf{z}^*). \end{aligned}$$

The Overlap Gap Property

Generally, consider a combinatorial optimization problem $E \sim \mathcal{F}$:

$$\begin{aligned} \mathbf{z}^* &:= \arg \max_{\mathbf{z} \in \{0,1\}^{\times n}} E(\mathbf{z}), \\ E^* &= E(\mathbf{z}^*). \end{aligned}$$

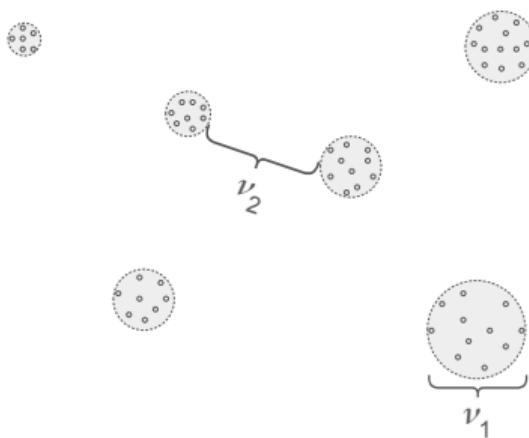
Consider space of high-value points:

$$S_\mu^E := \{ \mathbf{z} \in \{0,1\}^{\times n} : E(\mathbf{z}) \geq \mu E^* \}$$

The Overlap Gap Property

E satisfies the *overlap gap property* (OGP) with parameters (μ, ν_1, ν_2) if w.h.p.:

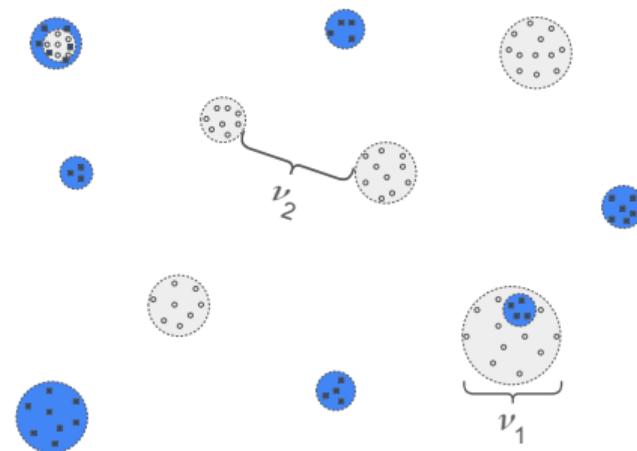
$$\left\{ (\mathbf{x}, \mathbf{y}) \in S_\mu^E \times S_\mu^E : d_H(\mathbf{x}, \mathbf{y}) \in [\nu_1 n, \nu_2 n] \right\} = \emptyset$$



The (Ensemble) Overlap Gap Property

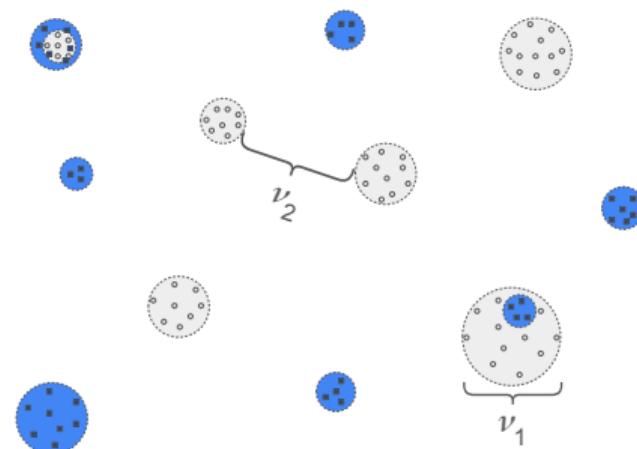
E satisfies the *ensemble overlap gap property* (e-OGP) with parameters (μ, ν_1, ν_2) if w.h.p.:

$$\left\{ (\mathbf{x}, \mathbf{y}) \in S_\mu^E \times S_\mu^{E'} : d_H(\mathbf{x}, \mathbf{y}) \in [\nu_1 n, \nu_2 n] \right\} = \emptyset$$



The (Ensemble) Overlap Gap Property

Why does the e-OGP obstruct algorithms?



The (Ensemble) Overlap Gap Property

Why does the e-OGP obstruct algorithms?

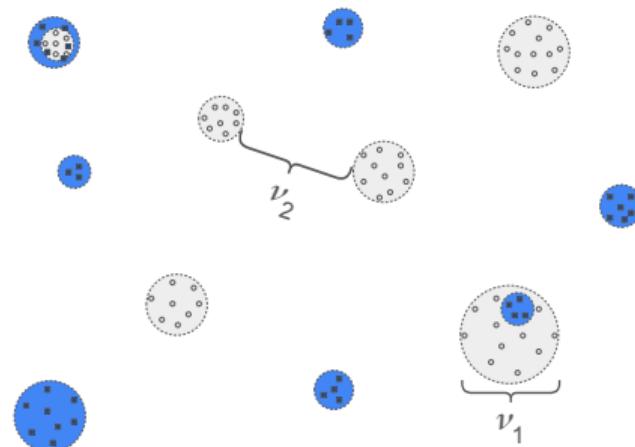
- ▶ Independent instances have distant high-energy configurations



The (Ensemble) Overlap Gap Property

Why does the e-OGP obstruct algorithms?

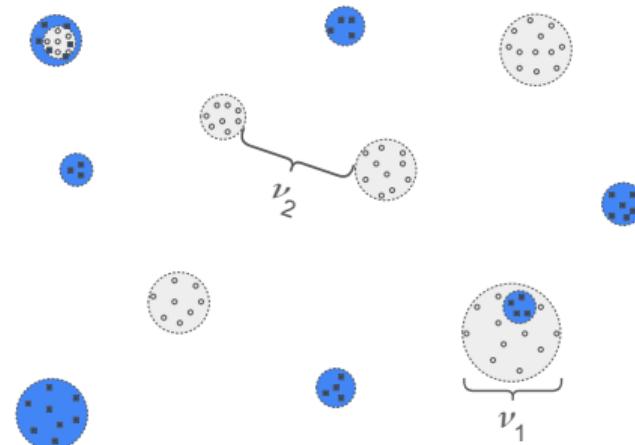
- ▶ Independent instances have distant high-energy configurations
- ▶ By e-OGP, interpolations between independent instances have clustered solutions



The (Ensemble) Overlap Gap Property

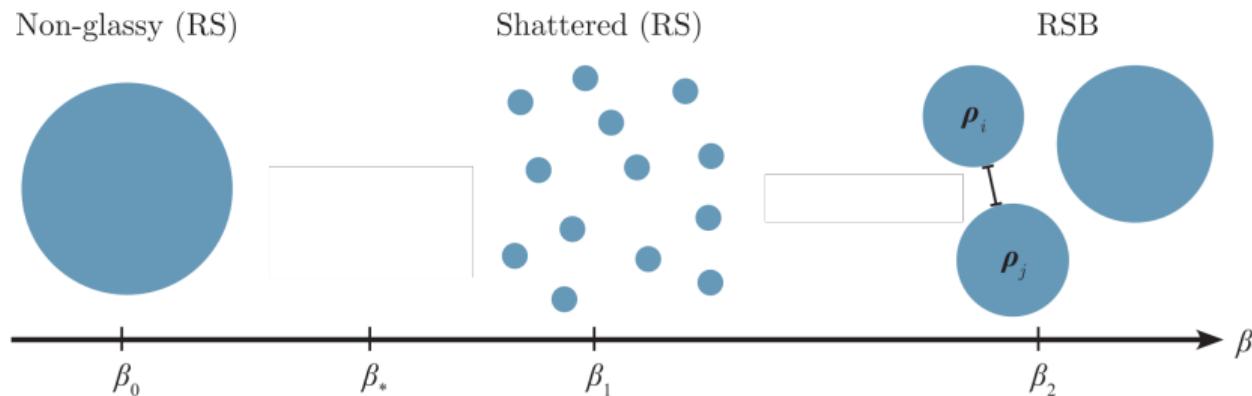
Why does the e-OGP obstruct algorithms?

- ▶ Independent instances have distant high-energy configurations
- ▶ By e-OGP, interpolations between independent instances have clustered solutions
- ▶ Algorithms have to “jump the gap” at some point along any interpolation path; Lipschitz algorithms can’t do this!



Sampling

The OGP also implies a *dynamical spin glass transition* at low temperatures²



Support of Boltzmann distribution “shatters” into exponentially many states...

⇒ slow mixing from a worst-case starting point due to extensive free energy wells

²D. Gamarnik et al., Probab. Theory Relat. Fields 193, 89 (2025)

Classical Problems

In practice, OGP *matches* performance of best computationally efficient algorithms

Problem description	OGP matches known algorithms	References
Cliques in Erdős-Rényi graphs	Yes	Based on references below
Independent Sets in sparse Erdős-Rényi graphs	Yes	[GS17a], [RV17], [GJW20a], [Wei20], [FGG20a]
Random K-SAT	Yes	[GS17b], [COHH17], [BH21]
Largest submatrix problem	Not known	[GL18]
Matching in random hypergraphs	Not known	[CGPR19]
Ground states of spin glasses	Yes	[GJ19], [GJW20b]
Number partitioning	Yes (up to sub-exponential factors)	[Sub18], [Mon19], [AMS20], [GK21]
Hidden Clique problem	Yes	[GZ19]
Sparse Linear Regression	Yes (up to a constant factor)	[GI17]
Principal submatrix recovery	Not known	[GJS19], [AWZ20]

A Quantum OGP?

Is there a *quantum* OGP for Hamiltonians?

$$\mathcal{H} = \sum_E E |E\rangle\langle E|$$

- ▶ This would tell us when we have slow mixing, easy-to-prepare low-energy states, quantum memories, ...

A Quantum OGP?

$$H = \sum_E E |E\rangle\langle E|$$

Unfortunately, immediately run into issues...

A Quantum OGP?

$$H = \sum_E E |E\rangle\langle E|$$

Unfortunately, immediately run into issues...

- ▶ If $|E\rangle$ and $|E'\rangle$ are high energy, so is:

$$|t\rangle := \sqrt{t} |E\rangle + \sqrt{1-t} |E'\rangle$$

for all t ; how can high-energy states be “gapped”?

A Quantum OGP?

$$H = \sum_E E |E\rangle\langle E|$$

Unfortunately, immediately run into issues...

- ▶ If $|E\rangle$ and $|E'\rangle$ are high energy, so is:

$$|t\rangle := \sqrt{t} |E\rangle + \sqrt{1-t} |E'\rangle$$

for all t ; how can high-energy states be “gapped”?

- ▶ *Of course* algorithms preparing low-energy $|E\rangle$ are inefficient; even *reading out* E can be inefficient quantumly!

A Quantum OGP?

How do we get circumvent this?

Efficient Learning Implies Quantum Glassiness

Eric R. Anschuetz

Average-case quantum complexity from glassiness

Alexander Zlokapa,^{1,*} Bobak T. Kiani,^{2,†} and Eric R. Anschuetz^{3,4,‡}

The Commutation Index

- ▶ Previous work showed quantum complementarity implies the *absence* of a spin glass transition³...

³ERA et al., Phys. Rev. Lett. **135**, 030602 (2025)

⁴S. Chen et al., arXiv:2404.19105

The Commutation Index

- ▶ Previous work showed quantum complementarity implies the *absence* of a spin glass transition³...
- ▶ For:

$$\mathbf{H} = \frac{1}{\sqrt{m}} \sum_{k=1}^m J_k \mathbf{A}_k,$$

define the *commutation index* as:

$$\Delta_{\mathbf{H}} = \sup_{\|\psi\|_2=1} \frac{1}{m} \sum_{k=1}^m \langle \psi | \mathbf{A}_k | \psi \rangle^2.$$

If $\Delta_{\mathbf{H}} \rightarrow 0$ asymptotically, \mathbf{H} has no spin glass phase at constant temperature

³ERA et al., Phys. Rev. Lett. **135**, 030602 (2025)

⁴S. Chen et al., arXiv:2404.19105

The Commutation Index

- ▶ Previous work showed quantum complementarity implies the *absence* of a spin glass transition³...
- ▶ For:

$$\mathbf{H} = \frac{1}{\sqrt{m}} \sum_{k=1}^m J_k \mathbf{A}_k,$$

define the *commutation index* as:

$$\Delta_{\mathbf{H}} = \sup_{\|\psi\|_2=1} \frac{1}{m} \sum_{k=1}^m \langle \psi | \mathbf{A}_k | \psi \rangle^2.$$

If $\Delta_{\mathbf{H}} \rightarrow 0$ asymptotically, \mathbf{H} has no spin glass phase at constant temperature

- ▶ $\Delta_{\mathbf{H}}^{-1}$ is *exactly*⁴ the *sample complexity of learning* $\{\langle \mathbf{A}_k \rangle\}_k$ in a state⁴

³ERA et al., Phys. Rev. Lett. 135, 030602 (2025)

⁴S. Chen et al., arXiv:2404.19105

The Quantum OGP

This motivates the following definition of a quantum OGP:

Definition (Quantum OGP, informal)

We say \mathbf{H} satisfies the *quantum OGP* with parameters (μ, ν_1, ν_2) if:

1. $\Delta_{\mathbf{H}} \not\rightarrow 0$
2. The classical shadows estimator $\frac{1}{R} \sum_{r=1}^R E_{\mathbf{H}}(\mathbf{y}_r)$ exhibits a *classical OGP* with parameters (μ, ν_1, ν_2)

The Quantum OGP

This motivates the following definition of a quantum OGP:

Definition (Quantum OGP, informal)

We say \mathbf{H} satisfies the *quantum OGP* with parameters (μ, ν_1, ν_2) if:

1. $\Delta_{\mathbf{H}} \not\rightarrow 0$
 2. The classical shadows estimator $\frac{1}{R} \sum_{r=1}^R E_{\mathbf{H}}(\mathbf{y}_r)$ exhibits a *classical OGP* with parameters (μ, ν_1, ν_2)
- $E_{\mathbf{H}}$ is a *classical* disordered model with only a constant volume overhead iff $\Delta_{\mathbf{H}} \not\rightarrow 0$!

The Quantum OGP

First main result: quantum OGP satisfied by sparsified *quantum p-spin model*:

$$H_p := \frac{1}{\sqrt{\binom{n}{p}}} \sum_{\bar{i} \in \binom{[n]}{p}} \sum_{\mathbf{b} \in \{1,2,3\}^p} J_{\bar{i}, \mathbf{b}} \sigma_{\bar{i}}^{(\mathbf{b})}$$

The Quantum OGP Implies Algorithmic Hardness

Second main result: the quantum OGP implies hardness for stable classical *and* quantum algorithms!

Theorem (Quantum OGP obstructs stable algorithms, informal)

Let \mathcal{A} be a stable algorithm, i.e.,

$$d_{W_2}(\mathcal{A}(\mathbf{X}), \mathcal{A}(\mathbf{Y})) \leq L \|\mathbf{X} - \mathbf{Y}\|_1 \quad (1)$$

for any $L = O(1)$ and \mathbf{X}, \mathbf{Y} the Hamiltonian coefficients. \mathcal{A} cannot achieve an approximation ratio μ if the problem class satisfies the quantum OGP with parameters $(\mu - \delta, \nu_1, \nu_2)$ for some $\delta > 0$.

Stable Algorithms

d_{W_2} is the *quantum Wasserstein distance*⁵

- ▶ Roughly, states which differ by a k -local operation differ in quantum Wasserstein distance by $O(k)$
- ▶ Generalizes Hamming distance & classical Wasserstein distance, so this generalizes classical notions of stability⁶

⁵G. De Palma et al., IEEE Trans. Inf. Theory **67**, 6627 (2021)

⁶D. Gamarnik et al., in FOCS (2022); A. El Alaoui et al., Commun. Math. Phys. **406**, 1 (2025)

Stable Algorithms

Examples of algorithms stable under quantum Wasserstein distance:

- ▶ Algorithms Lipschitz in gate complexity (quantum or classical)

Stable Algorithms

Examples of algorithms stable under quantum Wasserstein distance:

- ▶ Algorithms Lipschitz in gate complexity (quantum or classical)
- ▶ $\log(n)$ -time Lindbladian evolution (from any initial state)

Stable Algorithms

Examples of algorithms stable under quantum Wasserstein distance:

- ▶ Algorithms Lipschitz in gate complexity (quantum or classical)
- ▶ $\log(n)$ -time Lindbladian evolution (from any initial state)
- ▶ $\log(n)$ -depth quantum neural networks (variational quantum algorithms)

Stable Algorithms

Examples of algorithms stable under quantum Wasserstein distance:

- ▶ Algorithms Lipschitz in gate complexity (quantum or classical)
- ▶ $\log(n)$ -time Lindbladian evolution (from any initial state)
- ▶ $\log(n)$ -depth quantum neural networks (variational quantum algorithms)
- ▶ Phase estimation to $\log(n)$ bits of precision

Stable Algorithms

Examples of algorithms stable under quantum Wasserstein distance:

- ▶ Algorithms Lipschitz in gate complexity (quantum or classical)
- ▶ $\log(n)$ -time Lindbladian evolution (from any initial state)
- ▶ $\log(n)$ -depth quantum neural networks (variational quantum algorithms)
- ▶ Phase estimation to $\log(n)$ bits of precision
- ▶ See paper for more!

APPENDIX B EXAMPLES OF STABLE QUANTUM ALGORITHMS

We here relate the notion of stability in Wasserstein distance that we use in the main text to other natural notions of the stability of a quantum algorithm, as well as give explicit examples of standard quantum algorithms which are stable. As a tool to convert between various notions of stability, we will

Outlook

In conclusion, we have...

- ▶ ... constructed a way to characterize glassiness in quantum systems
- ▶ ... ruled out well-known classical *and* quantum algorithms for near-ground state preparation of disordered k -spin models
- ▶ ... connected average-case hardness to the efficiency of learning

Ideas have since already been used for other settings and algorithms

Decoded Quantum Interferometry Requires Structure

Eric R. Anschuetz,^{1,2,*} David Gamarnik,³ and Jonathan Z. Lu^{4,†}

¹*Institute for Quantum Information and Matter, Caltech,
1200 E. California Blvd., Pasadena, CA 91125, USA*

²*Walter Burke Institute for Theoretical Physics, Caltech,
1200 E. California Blvd., Pasadena, CA 91125, USA*

³*Sloan School of Management, MIT, 100 Main St., Cambridge, MA 02142, USA*

⁴*Department of Mathematics, MIT, 77 Massachusetts Ave., Cambridge, MA 02139, USA*

Average-case quantum complexity from glassiness

Alexander Zlokapa,^{1,*} Bobak T. Kiani,^{2,†} and Eric R. Anschuetz^{3,4,‡}

¹*Center for Theoretical Physics, MIT, 77 Massachusetts Ave., Cambridge, MA 02139, USA*

²*Department of Computer Science, Bowdoin College,
255 Maine Street, Brunswick, Maine 04011, USA*

³*Institute for Quantum Information and Matter, Caltech,
1200 E. California Blvd., Pasadena, CA 91125, USA*

⁴*Walter Burke Institute for Theoretical Physics, Caltech,
1200 E. California Blvd., Pasadena, CA 91125, USA*

Outlook

Where do we go from here?

- ▶ Can one construct general quantum “bottleneck” theorems?⁷
- ▶ Quantum algorithms achieving optimal performance? (*Algorithmic universality*⁸)
- ▶ Finite dimensional or sparse models?

⁷D. Gamarnik et al., arXiv:2411.04300; T. Rakovszky et al., arXiv:2412.09598

⁸H. E. Cheiriri and D. Gamarnik, arXiv:2412.18014

Questions?

Thank you!

arXiv:2505.00087 [quant-ph] and arXiv:2510.08497 [quant-ph]