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Statistical-Computational Gaps

What makes Gibbs state preparation hard?
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Statistical-Computational Gaps

What makes optimization hard?
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Statistical-Computational Gaps

What makes optimization hard?

(or, why complexity theory can be misleading)
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Statistical-Computational Gaps

Canonical example of an NP-hard optimization problem: MAX-CLIQUE

» Given a graph on n vertices, what is its largest clique?
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Statistical-Computational Gaps

PCP theorem: MAX-CLIQUE is even hard to approximate

Theorem (D. Zuckerman, Theory Comput. 3, 103 (2007))

For any € > 0 it is NP-hard to approximate MAX-CLIQUE to an approximation
ratio ——
n

» Even a trivial clique of a single vertex achieves %—you can’t do much better!
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Statistical-Computational Gaps

» Complexity theory gives us hardness for adversarially chosen examples
» For an Erd6és—Rényi graph ~ G (n, %) MAX-CLIQUE ~ 2log, (n) w.h.p.
» Trivial cliques achieve an approximation ratio ~ m, already beating what PCP
tells us for worst-case instances!
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Statistical-Computational Gaps

In fact, we can do better than a factor-2log, (n) approximation:?

1. Choose a random vertex v.
2. Throw away the vertices not adjacent to v.
3. Repeat.

1R. M. Karp, tech. rep. UCB/ERL M581 (1976)
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Statistical-Computational Gaps

In fact, we can do better than a factor-2 log, (n) approximation:!

1. Choose a random vertex v.
2. Throw away the vertices not adjacent to v.
3. Repeat.

For a graph ~ G (n, %) you throw away roughly half of the vertices each time, giving a
clique of size ~ log, (n). ..

... and typically achieving an approximation ratio of %!
A similar story holds if one is interested in sampling from the Boltzmann distribution of
configurations

IR, M. Karp, tech. rep. UCB/ERL M581 (1976)
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Statistical-Computational Gaps

Can we do even better?
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Statistical-Computational Gaps

Can we do even better?

The Largest Clique of a Random Graph: The Most
"Embarrassing” Open Problem in Random Structures
Imagine a club with N members, in which about 50% of the
N(N=1)/2 member pairs know each other personally, and the
remaining 50% of the members do not. You want to find a largest
clique in this club, namely, the largest group of members out of
the N members who all know each other. What is the typical size
c* of such a clique? How easy is it to find one? This question can

Even after 50 years, no. :(
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Statistical-Computational Gaps

MAX-CLIQUE is the classic example of a statistical-computational gap in a
maximization problem:

> Statistically, we know what the maximum is without doing any work!

» Computationally, we know of no efficient algorithms outputting the arg max
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Statistical-Computational Gaps

Without complexity theory, how can we characterize problems exhibiting
statistical-computational gaps?
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Statistical-Computational Gaps

Without complexity theory, how can we characterize problems exhibiting
statistical-computational gaps?

The overlap gap property: A topological barrier to
optimizing over random structures

David Gamarnik™®’
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The Overlap Gap Property

Generally, consider an energy function E ~ F:

z* ;= argmax E (2),
zc{0,1}*"
E*=E(z").
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The Overlap Gap Property

Generally, consider a combinatorial optimization problem E ~ F:

z* ;= argmax E (2),
zc{0,1}*"
E*=E(z").

Consider space of high-value points:

55 ={ze€{0,1}*": E(z) > pE*}
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The Overlap Gap Property

E satisfies the overlap gap property (OGP) with parameters (u, v1,1v2) if w.h.p.:

{(x,y) € 55 X S,’f tdy (x,y) € [van, yzn]} =0
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The (Ensemble) Overlap Gap Property

E satisfies the ensemble overlap gap property (e-OGP) with parameters (u, v, v2) if
w.h.p.:

{(x,y) € 55 X SME, cdu(x,y) € [Vln,ygn]} =0

®
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The (Ensemble) Overlap Gap Property

Why does the e-OGP obstruct algorithms?

®
™ y, e .

14 /28



The (Ensemble) Overlap Gap Property

Why does the e-OGP obstruct algorithms?
» Independent instances have distant high-energy configurations
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The (Ensemble) Overlap Gap Property

Why does the e-OGP obstruct algorithms?
» Independent instances have distant high-energy configurations
» By e-OGP, interpolations between independent instances have clustered solutions

» Algorithms have to “jump the gap” at some point along any interpolation path;
Lipschitz algorithms can't do this!
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Sampling

The OGP also implies a dynamical spin glass transition at low temperatures?
Non-glassy (RS) Shattered (RS) RSB
® o
®
o o ®
® [
o o
. .
B, B. B,

Support of Boltzmann distribution “shatters” into exponentially many states. ..

— slow mixing from a worst-case starting point due to extensive free energy wells

2D. Gamarnik et al., Probab. Theory Relat. Fields 193, 89 (2025)
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Classical Problems

In practice, OGP matches performance of best computationally efficient algorithms

Problem description

OGP matches known algorithms

References

Cliques in Erdos-Rényi graphs

Independent Sets in sparse Erdos-Rényi graphs
Random K-SAT

Largest submatrix problem

Matching in random hypergraphs

Ground states of spin glasses

Number partitioning

Hidden Clique problem

Sparse Linear Regression

Principal submatrix recovery

Not known
Not known
Yes
Yes (up to sub-exponential factors)
Yes
Yes (up to a constant factor)
Not known

Based on references below
GS17a],[RV17], [GIW20a],[Wei20],[FGG20a]
GS17b],[COHH17],[BH21]

[GL1g]

CGPR19
[GJ19],[GJW20b][Sub18],[Mon19], [AMS20],
GK21
Z1
[GI
GJS19].[AWZ20!

Q
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Q
=
=

16 /28



A Quantum OGP?

Is there a quantum OGP for Hamiltonians?

H=> EIE)(E|
E

» This would tell us when we have slow mixing, easy-to-prepare low-energy states,
quantum memories, ...

17/28



A Quantum OGP?

H=> EIE)(E|
E

Unfortunately, immediately run into issues. . .
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A Quantum OGP?

H=> EIE)(E|
E

Unfortunately, immediately run into issues. . .

» If |[E) and |E’) are high energy, so is:
) = Vt|E)+V1—t|E)

for all t; how can high-energy states be “gapped”?
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A Quantum OGP?

H=> EIE)(E|
E

Unfortunately, immediately run into issues. . .

» If |[E) and |E’) are high energy, so is:
) = Vt|E)+V1—t|E)

for all t; how can high-energy states be “gapped”?

» Of course algorithms preparing low-energy |E) are inefficient; even reading out E
can be inefficient quantumly!
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A Quantum OGP?

How do we get circumvent this?
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A Quantum OGP?

Efficient Learning Implies Quantum Glassiness

Eric R. Anschuetz

Average-case quantum complexity from glassiness

Alexander Zlokapa,'* Bobak T. Kiani,?»T and Eric R. Anschuetz>* *
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The Commutation Index

» Previous work showed quantum complementarity implies the absence of a spin
glass transition3. ..

3ERA et al., Phys. Rev. Lett. 135, 030602 (2025)

4S. Chen et al., arXiv:2404.19105
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The Commutation Index

» Previous work showed quantum complementarity implies the absence of a spin
glass transition3. ..

» For:
1 m
H=—5% JA,
Vm ;

define the commutation index as:

m

An= sup =3 (6] A ).

) =1 M =5

If Ay — 0 asymptotically, H has no spin glass phase at constant temperature

3ERA et al., Phys. Rev. Lett. 135, 030602 (2025)

4S. Chen et al., arXiv:2404.19105
20/28


https://doi.org/10.1103/cbqf-d24r
https://arxiv.org/abs/2404.19105

The Commutation Index

» Previous work showed quantum complementarity implies the absence of a spin
glass transition3. ..

» For:
1 m
H=—5% JA,
Vm ;

define the commutation index as:

m

An= sup =3 (6] A ).

) =1 M =5

If Ay — 0 asymptotically, H has no spin glass phase at constant temperature

> A, is exactly” the sample complexity of learning {(Ax)}, in a state*

3ERA et al., Phys. Rev. Lett. 135, 030602 (2025)

4S. Chen et al., arXiv:2404.19105
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The Quantum OGP

This motivates the following definition of a quantum OGP:

Definition (Quantum OGP, informal)
We say H satisfies the quantum OGP with parameters (u,v1, 1) if:

1. Ay A0

2. The classical shadows estimator %25:1 En (yr) exhibits a classical OGP with
parameters (u,v1, 2)
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The Quantum OGP

This motivates the following definition of a quantum OGP:

Definition (Quantum OGP, informal)
We say H satisfies the quantum OGP with parameters (u,v1, 1) if:
1. Ay A0

2. The classical shadows estimator %25:1 En (yr) exhibits a classical OGP with
parameters (u,v1, 2)

» Ep is a classical disordered model with only a constant volume overhead iff
Ay A 0!
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The Quantum OGP

First main result: quantum OGP satisfied by sparsified quantum p-spin model.

1
Hpim —— > >, b5

(p) e () be{1.2:3)°
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The Quantum OGP Implies Algorithmic Hardness

Second main result: the quantum OGP implies hardness for stable classical and
quantum algorithms!

Theorem (Quantum OGP obstructs stable algorithms, informal)
Let A be a stable algorithm, i.e.,

dw, (A(X), A(Y)) < L[|X = Y] (1)

for any L = 0O (1) and X, Y the Hamiltonian coefficients. A cannot achieve an
approximation ratio . if the problem class satisfies the quantum OGP with parameters
(1w — d,v1,12) for some § > 0.
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Stable Algorithms

dw, is the quantum Wasserstein distance®

» Roughly, states which differ by a k-local operation differ in quantum Wasserstein
distance by O (k)

» Generalizes Hamming distance & classical Wasserstein distance, so this
generalizes classical notions of stability®

5G. De Palma et al., IEEE Trans. Inf. Theory 67, 6627 (2021)

5D. Gamarnik et al., in FOCS (2022); A. El Alaoui et al., Commun. Math. Phys. 406, 1 (2025)
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Stable Algorithms

Examples of algorithms stable under quantum Wasserstein distance:

» Algorithms Lipschitz in gate complexity (quantum or classical)
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Stable Algorithms

Examples of algorithms stable under quantum Wasserstein distance:
» Algorithms Lipschitz in gate complexity (quantum or classical)
» log (n)-time Lindbladian evolution (from any initial state)
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» Phase estimation to log (n) bits of precision
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Stable Algorithms

Examples of algorithms stable under quantum Wasserstein distance:
» Algorithms Lipschitz in gate complexity (quantum or classical)
» log (n)-time Lindbladian evolution (from any initial state)
» log (n)-depth quantum neural networks (variational quantum algorithms)
» Phase estimation to log (n) bits of precision
» See paper for morel!

APPENDIX B
EXAMPLES OF STABLE QUANTUM ALGORITHMS

We here relate the notion of stability in Wasserstein distance that we use in the main text to other
natural notions of the stability of a quantum algorithm, as well as give explicit examples of standard
quantum algorithms which are stable. As a tool to convert between various notions of stability, we will
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Outlook

In conclusion, we have. ..
> ... constructed a way to characterize glassiness in quantum systems

» .. .ruled out well-known classical and quantum algorithms for near-ground state
preparation of disordered k-spin models

» ...connected average-case hardness to the efficiency of learning

Ideas have since already been used for other settings and algorithms

. Average-case quantum complexity from glassiness
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Outlook

Where do we go from here?
» Can one construct general quantum “bottleneck” theorems?’
» Quantum algorithms achieving optimal performance? (Algorithmic universality?)

» Finite dimensional or sparse models?

"D. Gamarnik et al., arXiv:2411.04300; T. Rakovszky et al., arXiv:2412.09598

8H. E. Cheairi and D. Gamarnik, arXiv:2412.18014
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Questions?

Thank you!

arXiv:2505.00087 [quant-ph] and arXiv:2510.08497 [quant-ph]
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