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Problems in current 

quantum machine learning

(1) To find the good parameter to characterize 

the model, we use gradient descent.

Barren plateau problem: Gradient often 

vanishes before achieving the good solution.

(2) Fully visible Boltzmann machine does not 

have this problem. But, this model is too 

simple (Coopmans & Benedetti (2024)).



Classical Machine 

Learning Lessons: Need

for Structural Optimization.

(1) To handle complex information, it is 

necessary to use models with hidden layers. In 

fact, many papers point out that models without 

hidden layers lack expressive power.



Boltzmann machine
Unsupervised learning

Observed

We need to estimate the hidden structure from 

observed data. 

Node: Data point

Edge: Correlation



Classical Machine 

Learning Lessons: Need

for Structural Optimization
(2) In such models, vanishing gradient

problem occurs, preventing accurate parameter 

determination.

(3) To solve this problem, the current practice is 

to decompose the target optimization problem 

into easier optimization subproblems that reflect 

the hidden layer structure.

This is not a minor improvement

like refining the gradient calculation.



Classical Machine 

Learning Lessons: Need

for Structural Optimization
(4) Many of these approaches are considered 

variations of the standard EM algorithm

for cases with incomplete data. Although the 

EM algorithm and its variants can effectively 

avoid the vanishing gradient problem and they  

easily escape saddle points, the risk of 

converging to a local optimum generally exists 

in the classical case, but these algorithms still 

work well empirically.



Existing major studies on 

quantum ML

(1) Coopmans & Benedetti (Communications 

Physics, 2024): Fully visible quantum 

Boltzmann machine. Proposed quantum 

algorithm outperforms classical case. It lacks 

expressive power.

(2) Demidik etal (Communications Physics, 

2025): It proposes semi-quantum Restricted 

Boltzmann machine. But, it employs gradient 

descent so that it cannot resolve Barren plateau 

problem 



EM algorithm vs em algorithm
The concept used in EM algorithm cannot be 

extended to quantum case.

EM  (Expectation-

Maximization) 

algorithm

em (e/m-projection 

algorithm) algorithm

General method with hidden variable

(Layered Boltzmann machine

Hidden Markov, Missing Data)

General structure in information 

geometry by Amari

Bregman divergence structure

(Applicable beyond hidden variables, 

including rate-distortion theory)

E step (Expectation)

M step (Maximization)

e-Projection along exponential family

m-Projection along mixture family

Maximizes likelihood by iteratively 

handling hidden variables.

Minimize divergence between 

exponential family & mixture family

Quantum extension is difficult 

because of the difficulty of quantum 

extension of likelihood.

Quantum extension is possible based 

on quantum information geometry



Proposed method: 

semi-quantum Boltzmann machine
(1)Visible layer: classical system

(2)Hidden layer: quantum system, which has 

more expressive power.

(3)Applying the em algorithm by alternating e-

step and m-step.

(4)e-step can be trivially done

(5)Most difficult part is m-step. 



m-step in 

semi-quantum Boltzmann machine

(1)m-step is equivalent to solving fully visible 

sq Boltzmann machine.

(2)In fully visible quantum Boltzmann machine 

the parameter can be determined via 

gradient descent. It can be done classically 

or quantumly. Coopmans & Benedetti’s 

efficient method can be applied when QC 

is available. 



Classical Boltzmann machine

,

, { 1,1} ( , )

( ) log exp( )
k j

k j k j

k j k j

x y k j E k V j H

x y x y    
 −   

= + +   


,

,
( , )

( , ) : exp( ( ))
k j k j

k j k jXY
k j E k V j H

P x y x y x y


    
  

= + + −  



Which parameter explains observed data in the best way? 

Convex function

,

( , )
(( ) ,( ) ,( ) )

k j k j

k j E k V j H
   

  
=


O

Parametrization

Visible



Parameters of hidden model 

explains visible structure

Given an observed empirical distribution 

we find the closest distribution 
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This minimization is very difficult!



em-algorithm
Amari

em-algorithm is a mathematical generalization 

of EM algorithm.

It is an alternative application of e-projection 

and m-projection, which are basic concepts of 

information geometry.
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Minimization is converted into alternating 

minimization.



QUANTUM EXTENSION
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Exponential family
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e-projection

Pythagorean theorem
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e-projection is calculated as

Pythagorean theorem

*

( )

( )
( )

[ ]: argmin ( )
e

a
a

D




   


 = = 
M

M


( )a


M



( )

( )
[ ]

e

a
 

M

Mixture family ( )E

where
*

1

: argmin ( )
k

i

i

i

a


   
=

= −



*
= 

convex minimization!



m-projection

Pythagorean theorem
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m-projection

Pythagorean theorem
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em-algorithm
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em-algorithm is an iterative algorithm.
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Semi-Quantum Boltzmann machine
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sq Boltzmann machine is a key method for machine 

learning.



Find

Mixture family
:
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Semi-Quantum Boltzmann machine
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Mixture family
|

: { ( ) }
X H x

x

P x x x = M

*
: argminmin ( )D



  


=
ME





Our aim

e-step , | | ,
,   

X X H x H x
P P   = =

Semi-Quantum Boltzmann machine

( )

( )

( )

| | , | ,

,

| | | ,

, | | ,

( )

( )Tr log ( ) log ( )

( ) log ( ) log ( )

   ( ) log logTr

( ) ( ) ( )

X H x X H x X H x
x

X X X

x

X H x H x H x

x

X X X H x H x
x

D

P x P x P x

P x P x P x

P x

D P P P x D



 





 

 

  

  

 

= −

= −

+ −

= +











|
( )

VH X H x

x

P x x x = 



( 1)

,
: argmin ( ) argmin ( ) Tr

t

VH VHVH
D H

 
 

     + = = −

m-step Convex minimization

: exp( ( )),   ( ) : logTrexp( )H H
  
    = − =


, ,

( , )

z z z z z x x z x x z z

k k k j k j k j k j j j j j

k V k j E j H

H


           
  

= + + + +  

,
( ( ) Tr ) Tr Tr

z z

VH k VH kz VH
k

H
 

      



− = −




,
( ( ) Tr ) Tr Tr

x x

VH j VH jx VH
j

H
 

      



− = −




,
,

( ( ) Tr ) Tr Tr
z x z x

VH k j VH k jx VH
k j

H
 

        



− = −




etc


We can use gradient descent

When size is not so large, it can be solved classically 

(analytically).



m-step with large size
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In the classical case, the classical system requires 

certain structure like 2-partite structures etc. But, this 

method does not. 

Recently, many experimental studies have been 

done for quantum Gibbs sampling. 

This model is fully visible quantum Boltzmann 

machine. We can use the method by Coopmans & 

Benedetti’s.

Stochastic gradient descent + quantum Gibbs 

sampling.



Numerical calculation

bipartite graph structure between
visible and hidden nodes.

N: Number of visible nodes

M: Number of hidden nodes



Conclusion

• Application of em algorithm to semiquantum Boltzmann 

Machine (sqBM).

• Generally, the objective function is non-convex. To 

resolve this, we divide the problem into e-step and m-

step.

• e-step is easy, and m-step can be done with convex 

minimization. 

• m-step is the same as fully visible quantum Boltzmann 

Machine. 

• Fully visible quantum Boltzmann Machine has been 

already solved by Coopmans & Benedetti’s via 

stochastic gradient descent + quantum Gibbs sampling.
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