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Problems in current
quantum machine learning
(1) To find the good parameter to characterize

the model, we use gradient descent.

Barren plateau problem: Gradient often
vanishes before achieving the good solution.

(2) Fully visible Boltzmann machine does not
have this problem. But, this model is too
simple (Coopmans & Benedetti (2024)).



Classical Machine
Learning Lessons: Need
for Structural Optimization.

(1) To handle complex information, it is
necessary to use models with hidden layers. In
fact, many papers point out that models without
hidden layers lack expressive power.




Boltzmann machine

Unsupervised learning

We need to estimate the hidden structure from

observed data.
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Classical Machine
Learning Lessons: Need

for Structural Optimization
(2) In such models, vanishing gradient

problem occurs, preventing accurate parameter
determination.

(3) To solve this problem, the current practice is
to decompose the target optimization problem
into easier optimization subproblems that reflect
the hidden layer structure.

This is not a minor improvement
like refining the gradient calculation.



Classical Machine
Learning Lessons: Need

for Structural Optimization

(4) Many of these approaches are considered
variations of the standard EM algorithm

for cases with incomplete data. Although the
EM algorithm and its variants can effectively
avoid the vanishing gradient problem and they
easily escape saddle points, the risk of
converging to a local optimum generally exists
in the classical case, but these algorithms still
work well empirically.



Existing major studies on
quantum ML

(1) Coopmans & Benedetti (Communications
Physics, 2024): Fully visible quantum
Boltzmann machine. Proposed quantum
algorithm outperforms classical case. It lacks
expressive power.

(2) Demidik etal (Communications Physics,
2025): It proposes semi-quantum Restricted
Boltzmann machine. But, it employs gradient
descent so that it cannot resolve Barren plateau
problem



EM algorithm vs em algorithm

The concept used in EM algorithm cannot be
extended to quantum case.

EM (Expectation-
Maximization)
algorithm

General method with hidden variable
(Layered Boltzmann machine
Hidden Markov, Missing Data)

E step (Expectation)
M step (Maximization)

Maximizes likelinood by iteratively
handling hidden variables.

Quantum extension is difficult
because of the difficulty of quantum
extension of likelihood.

em (e/m-projection
algorithm) algorithm

General structure in information
geometry by Amari

Bregman divergence structure
(Applicable beyond hidden variables,
including rate-distortion theory)

e-Projection along exponential family
m-Projection along mixture family

Minimize divergence between
exponential family & mixture family

Quantum extension is possible based
on quantum information geometry



Proposed method:

semi-quantum Boltzmann machine
(1)Visible layer: classical system

(2)Hidden layer: quantum system, which has
more expressive power.

(3)Applying the em algorithm by alternating e-
step and m-step.

(4)e-step can be trivially done
(9)Most difficult part is m-step.




m-step In
semi-quantum Boltzmann machine

(1)m-step is equivalent to solving fully visible
sq Boltzmann machine.

(2)In fully visible quantum Boltzmann machine
the parameter can be determined via
gradient descent. It can be done classically
or quantumly. Coopmans & Benedetti's
efficient method can be applied when QC
IS available.



Classical Boltzmann machine

Parametrization Deep Boltzmann
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Which parameter explains observed data in the best way?



Parameters of hidden model

explains visible structure
PXY,é(x’y)_)PX,é(x) :=ZPXY,§(x’y)

Given an observed empirical distribution P (x)
we find the closest distribution 2, ;(x)
argmin D(P HPX, )
Maximum likelihood estimator
D(P,|P, ;) is not convex for & in general.

This minimization is very difficult!




em-algorithm
Amari

em-algorithm is a mathematical generalization
of EM algorithm.

It is an alternative application of e-projection

and m-projection, which are basic concepts of
information geometry.

XYH

D(P, HP ;)=min D(P, , xP, H

Py x

Minimization is converted into alternating
minimization.
min D(P, HP )=min D(P, , xP, H

8.Pyy XY, 0



QUANTUM EXTENSION



Mixture family

H : Hilbert space
S(H): Set of densities over #
X,,...., X linearly independent obervables on #

Mixture family
M@a)={peS(H)|TrpX, =a,,i=1,...,k}

a:=(a.,..a,)



Exponential family
. ¢ linearly independent observables on #

0 :=(@',..,0"
Convex function

— k .
#(0) :=log Trexp(log p + Z 0'X,)
i=1

X

1

k —
p; =expog p+ > 0'X,—§(0))
=1

Exponential family
E(P):={p; € S(H)}



Pythagorean theorem
Kullback-Leibler divergence

D(o H p):=Tro(logo —log p)
e-projection
l"("( J[p]:=argmin D(O'Hp)

ceM(a)

When o € M(4),

D(o|p)=D(a|T) [P+ DT LAl o)
Yo,

Mixture family E(p)
M(a) =
fM(a)[ ] (03



Pythagorean theorem
e-projection is calculated as

I'yta | pl=argmin D(c | p) = p;

oeM(a)

—_

where 6. —argmln¢(9) ZH’

convex mlnlmlzatlon'
P

Mixture family E(0)




Pythagorean theorem

m-projection
'™ |o]:=argmin D(c H P")

E(P)
P'EE(P)

When p' e E( p),

D(o|p)=D(c|T% [o)+DTL (o] p)
o)
Exponential family

E(L) o
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Pythagorean theorem
m-projection
'Y [o]:=argmin D(c|p")=p;
PIeE( p)
where 5 ._ arg;nin $(0)— zk:e"ai
convex minir;ilzation!

o
Exponential family

E(p) o
Lz plol P



em-algorithm

minmin D(p|e)

em-algorithm is an iterative algorithm.

We set initial point o, e E

m-step Py =Argmin(p HO' )

e-step 0,1 =argmin D(p,,, [o)

o€k

D(p(t+1) ‘O-(t+1)) =D (p(t+1) ‘O-(t)) <D (p(t) O-(t))

However, the convergence to the global
minimum has not been discussed.



em-algorithm
iterative algorithm to find
minimum divergence.
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Semi-Quantum Boltzmann machine

Deep Boltzmann
Boltzmann Restricted Machine
Machine Boltzmann '
Quantum —~——— Machine
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Exponential family :={p;,}, |
sq Boltzmann machine is a key method for machine

learning.



Semi-Quantum Boltzmann machine
H§=29,fa,f+ Z 6; oioci+6; .a,fa;+29;a;+9;a;

J
keV (k,j)eE jeH

0 = (0O 507 )i s Oy 50 Ve
p; =exp(H ; — ¢(§)), ¢(§) :=log Trexp(H ;) Convex function
Exponential family &:={p,},
Mixture family
Py + Distribution on observed system
M: =Py | Ty Py = Py
D(p, |p, ;)= min D(py, |p;)s P, 5 =Trup;
min D(p, |p, ;)= min D(p,,|p,)

0,Pmy0€
Find 6, := argminminD(pHpé.)
6.cE PEM



Semi-Quantum Boltzmann machine

Mixture family M:={D Py (x)| x)(x|® py,}

—_

Our aim 0. = argminminD(pHpé)

éef PEM

D(p|p;)
= Z P (x)Trpy,, (log Py (X) oy ~ 108 Py 5(X) Py )

= ZPX(x)(lOg Py (x)—log PXﬂ(x))

+ z PX (x)Trlex (log lex - lOg pH|x,0)

X

= D(PX HPX,Q)'FZP)((x)D(lex pH|x,0)

e-Step PX=PX,99 pH|x=pH|x,0 pVI{ =pr(x)|x><x|®pH|x



m-step Convex minimization

6" .= argmin D(p,,, H P, 5)=argming(0)—Trp,, H,
Ze 3 < ; < X o X 3 X X 3 4
H; = Zﬁkak + Z 0, ,0.0;+06, 0,0+ Z O;c; +0.0;

J
keV (k,j)eE jeH

p; =exp(H,;—$(0)), $(0):=logTrexp(H,)
We can use gradient descent

o z z
00; (9(0) - TrpVHHb') = TrpVH,éo-k —Trp,,0;
k
o . )
5o 9O =Tro Hy) =Trp,, j07 ~Trp,,0;
J
a V4 X < X
00" (¢(0)—Trp VHHE) = Trp v 5CkCj — TrpVHO-ko-j etc
k,j .

When size is not so large, it can be solved classically
(analytically).



m-step with large size

p; i=exp(H;—§(0)), (0):=logTrexp(H ;)

This model is fully visible quantum Boltzmann
machine. We can use the method by Coopmans &
Benedetti's.

Stochastic gradient descent + quantum Gibbs
sampling.

In the classical case, the classical system requires
certain structure like 2-partite structures etc. But, this
method does not.

Recently, many experimental studies have been
done for quantum Gibbs sampling.



Numerical calculation

(A) Bernoulli (PRX)
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~
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bipartite graph structure between
visible and hidden nodes.

N: Number of visible nodes

M: Number of hidden nodes



Conclusion

Application of em algorithm to semiquantum Boltzmann
Machine (sqBM).

Generally, the objective function is non-convex. To
resolve this, we divide the problem into e-step and m-
step.

e-step is easy, and m-step can be done with convex
minimization.

m-step is the same as fully visible quantum Boltzmann
Machine.

Fully visible quantum Boltzmann Machine has been
already solved by Coopmans & Benedetti's via
stochastic gradient descent + quantum Gibbs sampling.
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