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Preliminary of Quantum
Machine Learning



Quantum Neural Networks

Classical NNs

Data vector x = [xo, e, xd]T

Ty = ee T
Input Hidden Output Output:y = [yo, Y1, Ym]
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Quantum Neural Networks

* QNNs have various applications in Quantum Machine Learning (QML) (1]
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[1] Cerezo, Marco, et al. "Challenges and opportunities in quantum machine learning." Nature computational science 2.9 (2022): 567-576.
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Dynamical Lie algebra W HkusT (67)
* For QNN expressed as U(0) = lL=1(]_[I,§=1 eiel,kHl), the DLA of the circuit is defined as [1],
g = spang(iHy, iHy,*, iH})ie = spang(iG)Lie
* Inthefinite case, g = ¢ g1 D g2 D - D gy Where each g; is simple and ¢ is the center of g.
e DLA contains important information that drive or generate the system's evolution over time.
* If the QNN is deep enough to form a unitary 2-design on The Lie algebraic theory of QNNs unifies

the study of various sources of barren

eS8 c U(d) (compact Lie group) [2] olateaus (BP).

1 g e,
IEH [al,kﬁ(p, 0)] =0 Varg [al,kf(p, 0)] €0 (261_2) . :-_: .. .(:. . N
7Y |

e £(p,0) = Tr(U(B)pUT(B)O); Hy is the projection of H ontog. =~

[1] Ragone, Michael, et al. "A Lie algebraic theory of barren plateaus for deep parameterized quantum circuits." Nature Communications (2024).
[2] Fontana, Enrico, et al. "Characterizing Barren Plateaus in Quantum ansatze." Nature Communication (2024).



Standing at the crossroads WkFHeSs

* Trade-off between expressivity of QNNs, and classical simulatability [1]

v’ High expressivity X Classical simulatable
v' Quantum advantage Deep Structured X Ambiguous advantage
X Barren plateaus QNNs QNNs v No barren plateaus
X Hard to train v' Structured circuit

e Strategies for design deep and scalable QNNs that can avoid BP:

0)— H H —
- _:|: Algorithmic 10 |

— _:|: structure p U

10) —
m Relatively

Localized states |0) —

and measurements |0) —— simple circuit
|0) ——

[1] Cerezo, Marco, et al. "Does provable absence of barren plateaus imply classical simulability? Or, why we need to rethink variational quantum computing." Nature Communications (2025).
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Circuit framework of QRENN

Circuit Model of QRENN

___________________________________________________ 1 )
m : : : : %
Fixed Pm —#— w(e,) : [ W(e,) [ : [ W(O¢41) : M
initial | o = \
state Pn  —x Il ioiH; (0 Ul ipeH () | N )

Classical post-processing

* Assuming {@: W (0)} spans SU(2™); Hamiltonian [H;(x), H,(x)] = 0,forany t # 7; m € O(logn)

Theorem

* The DLA of QRENN can be decomposed into The control embedding makes the DLA
a direct sum of su(2™)
GQRENN = ¢ D SU(Zm)@ r
where ¢ := spang{il,, ® H,(x) : t € [T]} Simple algebraic structure and hard to

simulate classically ©
* risthe number of distinct joint eigenspaces from {H;(x)};



What can we do with QRENN?

Circuit Model of QRENN

A 9&
m : I :
Fixed Pm A— W (8,) . I w(o,) [ W(O;yq)
initial | i |
state P —x 1l ip1Hy () Ul i ()

Classical post-processing

* By choosing suitable measurement M, we can solve quantum supervised learning tasks using QRENN.

* The circuit contains the QSTV primitives; H;(x) are generally not sparse; Decision function can have high
degrees (BQP-complete even with m € O(logn) [1][2])

Dataset

X1,Y1 X3,Y3

X2,Y2
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[1] Montanaro, Ashley, and Changpeng Shao. "Quantum and classical query complexities of functions of matrices." Proceedings of the 56th Annual ACM Symposium on Theory of Computing. 2024.
[2] Gharibian, Sevag, and Frangois Le Gall. "Dequantizing the quantum singular value transformation: hardness and applications to quantum chemistry and the quantum PCP conjecture." Proceedings of the 54th annual ACM SIGACT

symposium on theory of computing. 2022.



Quantum supervised learning

* Given a batch training set T = {(yq,xq)}q with |T'| =

MSE =

ZQ:( —Tr U(xq,B ®)poU(x4; 0, 9) M))Z

cQIr—\

* Hard to estimate on quantum devices.

* Inspired from quantum hypothesis testing, design M, M, --- M;. forming
POVMs. We define the total loss

1 b
£(8,¢) =1 0 2 Tr (U(Xq; 0,9)poU(X4;6,9) Myq)
q=1
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Main theorem on trainability U HKUST (6 7)
|1m> |1m) [ b 8 Z®7n
|Om)(0m| ﬁr‘n; W(Bl) * W(Gz) W(9t+1) M ]\[0 — = 9 & ]in
I m + Z®7’L
Pn 7}/ el@1H.(x) elPtHe(x) M; = 2 9 ® Ian

* To reach max. expressivity, assuming sufficiently deep model.

e’ ur(9) €°

» For QNNs with depth O(poly(n)) [2], the circuit

achieves 2-design of the compact Lie group and,
hence, Eg ,|0;,L] = 0[1]

U8 =—>

T grows

e By setting the number of slot T polynomially in n, random initialization can give elements fully
mixed in e®

[1] Ragone, Michael, et al. "A Lie algebraic theory of barren plateaus for deep parameterized quantum circuits." Nature Communications (2024).
[2] Fontana, Enrico, et al. "Characterizing Barren Plateaus in Quantum ansatze." Nature Communication (2024).



Main theorem on trainability

10, 0| —2— W (8,)

1 1m)

|1m)
w(e,) *

n
Pn A

ei‘P1H1(x)

i

ayg—

\

\=

i

7‘6@&

AR (I )
UST(GZ)

%

Iym — Z8®™

W(0¢+1)

e ipeHe(x)

M My = 5 ® Ign;

12771 + Z®7n

M, = 5 ® Ion

* Form € O(logn), if p, has sufficiently large ‘overlap’, i.e., (

spaces of {H,};, where H, = H,(x), then,

Varg , |0, L] = Q(

1
poly(n)

o)

) with the union of the image

* To prevent from BP, the dimension of data processing register must be restricted to logn scaled.

* The initial state p,, should serve as a ‘good’ probe that can interact with H,’s

* The overlap assumption is often used in advanced quantum algorithm design for achieving advantages.
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Numerical results on trainability 00 B0 (67

e Task: to classify whether a Hamiltonian is

. , Gradient sampling for H learning w.r.t. n
Pauli, involutory or diagonal

107!

H = 2—2.2n
Input: X; — Output: class label y, —o— Diagonal -
Involutory |
10-2 —+—Pauli
T X X 4 X 3 X 3
o 1 N
=g E 10~ 1 ! ;
g > — A\*\:—“.—.‘
XT N |
m ppetniniinieiinlallub | 1074 5 : S
: : ——
1020 | —4£ W(8,) I M, m = [logn] | S
| : \ | ~
1 ] ! T T ‘. T T T T T
n . ] I
i i X \ 2(1) 4(2) 6(3) 8(3) 10(4) 12(4)
Pn 7 et n(m) qubits in the data embedding register

* Gradient sampling experiments, 500 random initial parameters (0, @) of the model, p,, being fixed.
* For each dataset in diagonal, involutory and pauli sets, 50 Hamiltonians with feature is generated and
mixed with another 50 random Hermitian matrices (from Haar unitary).
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Supervised learning on quantum data

* Apart from classifying Hamiltonians, what else?

Given a cluster-Ising model with periodic boundary conditions
H) = = Xj1 Xj1ZiXjea + A7 VY
where X, Y and Z are Pauli matrices. SPT phase in the Hamiltonian model [4]:

e Acluster:A<1 * An antiferromagnetic phase : A > 1.

Can we detect different symmetry-protected topological (SPT) phases of physical models via
QRENN?

[4] Li, Weikang, Zhi-de Lu, and Dong-Ling Deng. "Quantum neural network classifiers: A tutorial." SciPost Physics Lecture Notes (2022): 061.



SPT phase detection (

* QRENN model in learning SPT phase

" % Train: Prediction:
= P
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cluster antiferr. training size

Case 1: slots = 10, m = 1 and n = 8, initial state |0) ® |+)®8. Outcome: Training 40 data uniformly generated
by sampling A € [0,2]. Achieve 98.72% accuracy on 560 testing data.

Case 2: slots = 10, m = 1 and n = 8, initial state |0) ® |+)®8. Outcome: Train with different data sizes. Find
an improvement in performance as training size increases.



More on SPT phase detection 00 5055 (6T

 Another model with
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Concluding remarks
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Outlooks

* A more rigorous proof on the BQP-completeness of the model.

* The control embedding can be hard to realized physically.
* Any other simpler embedding method?

e Other thoughts of Quantum Recurrent Embedding Neural Network
* Treat it as a quantum neuron, can we build up larger structures?
* Application in quantum sensing?

e Efficient warm-start on initial probe state



~Thanks for watching~
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