

香港科技大学(广州)
THE HONG KONG UNIVERSITY OF SCIENCE
AND TECHNOLOGY (GUANGZHOU)

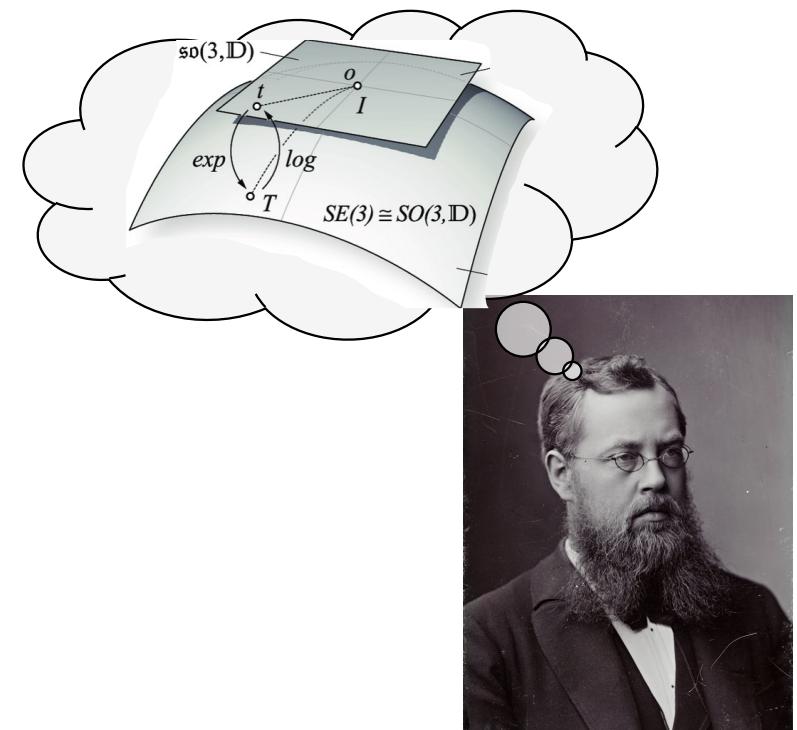
Quantum Recurrent Embedding Neural Networks

Mingrui Jing, Erdong Huang, Xiao Shi, Shengyu Zhang, Xin Wang

IW-QBM 2025

Content:

- Preliminary of Quantum Machine Learning
 - Quantum neural networks
 - Dynamical Lie algebra
- Quantum Recurrent Embedding Neural Network
 - Circuit framework
 - Quantum supervised learning
 - Trainability
 - SPT phase detection
- Concluding remarks
 - Take-Home message



Preliminary of Quantum Machine Learning

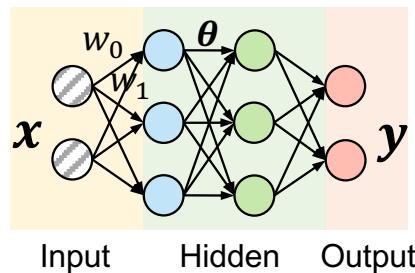
Preliminary

QRENN

Concluding remarks

Quantum Neural Networks

Classical NNs

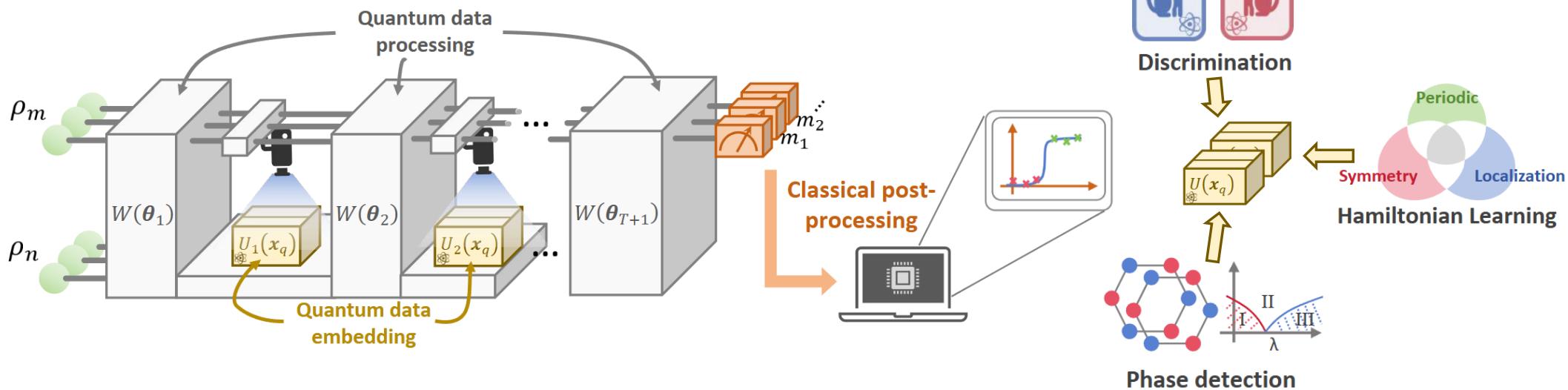


Data vector $\mathbf{x} = [x_0, \dots, x_d]^T$

Process: Adjust the weights of the connections $\mathbf{w}, \boldsymbol{\theta} = \{w_0, w_2, \dots, \theta_1, \theta_2, \dots\}$

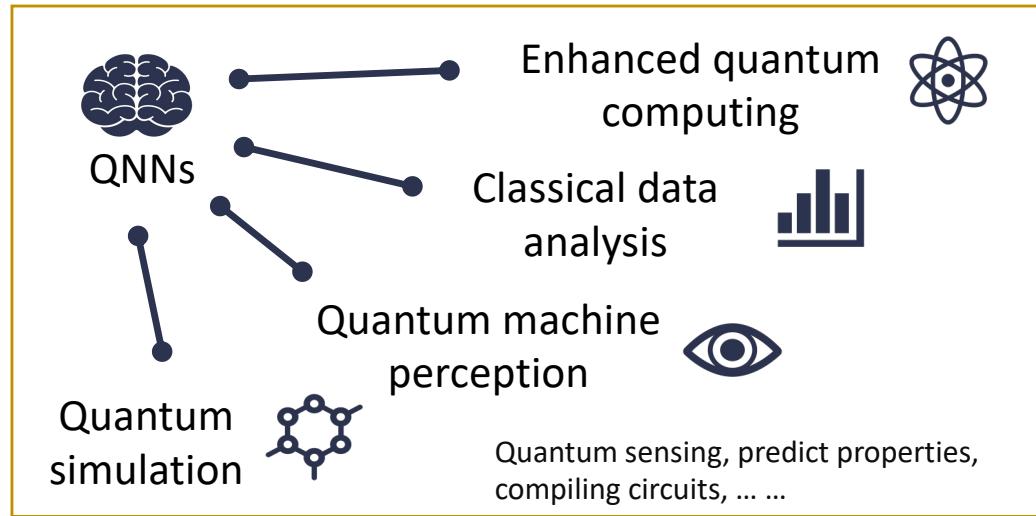
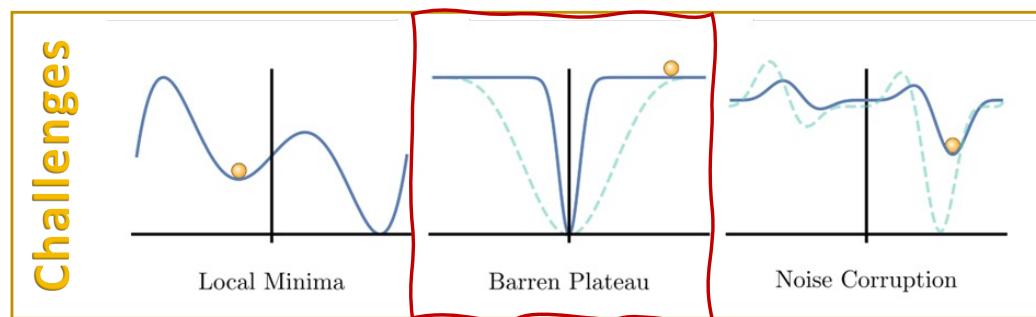
Output: $\mathbf{y} = [y_0, y_1, \dots, y_m]^T$

Quantum NNs

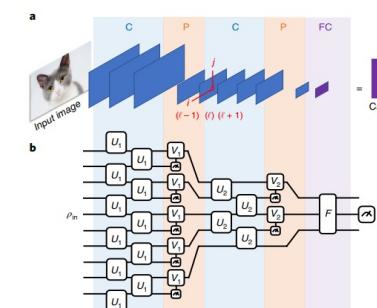


Quantum Neural Networks

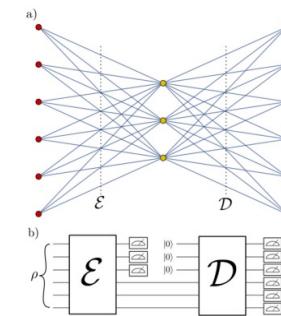
- QNNs have various applications in Quantum Machine Learning (QML) [1]



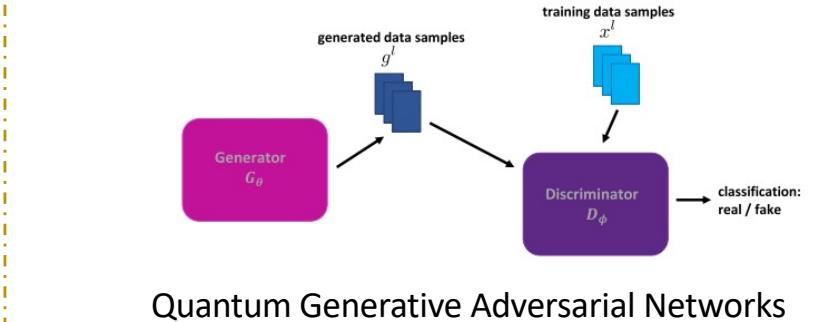
- Famous examples



Quantum convolutional neural network



Quantum autoencoder



[1] Cerezo, Marco, et al. "Challenges and opportunities in quantum machine learning." *Nature computational science* 2.9 (2022): 567-576.

Dynamical Lie algebra

- For QNN expressed as $U(\boldsymbol{\theta}) = \prod_{l=1}^L (\prod_{k=1}^K e^{i\theta_{l,k} H_l})$, the DLA of the circuit is defined as [1],

$$\mathfrak{g} = \text{span}_{\mathbb{R}} \langle iH_1, iH_2, \dots, iH_L \rangle_{Lie} = \text{span}_{\mathbb{R}} \langle i\mathcal{G} \rangle_{Lie}$$

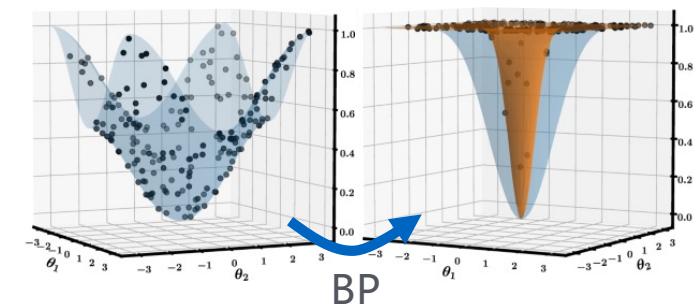
- In the finite case, $\mathfrak{g} = \mathfrak{c} \oplus \mathfrak{g}_1 \oplus \mathfrak{g}_2 \oplus \dots \oplus \mathfrak{g}_M$ where each \mathfrak{g}_j is simple and \mathfrak{c} is the center of \mathfrak{g} .
- DLA contains **important information that drive or generate** the system's evolution over time.

- If the QNN is deep enough to form a unitary 2-design on $e^{\mathfrak{g}} \subset \mathcal{U}(d)$ (compact Lie group) [2]

$$\mathbb{E}_{\boldsymbol{\theta}} [\partial_{l,k} \mathcal{L}(\rho, O)] = 0 \quad \text{Var}_{\boldsymbol{\theta}} [\partial_{l,k} \ell(\rho, O)] \in \mathcal{O} \left(\sum_j \frac{1}{d_{\mathfrak{g}_j}^2} \right)$$

- $\ell(\rho, O) = \text{Tr}(U(\boldsymbol{\theta})\rho U^\dagger(\boldsymbol{\theta})O)$; $H_{\mathfrak{g}}$ is the projection of H onto \mathfrak{g} .

The Lie algebraic theory of QNNs unifies the study of various sources of barren plateaus (BP).

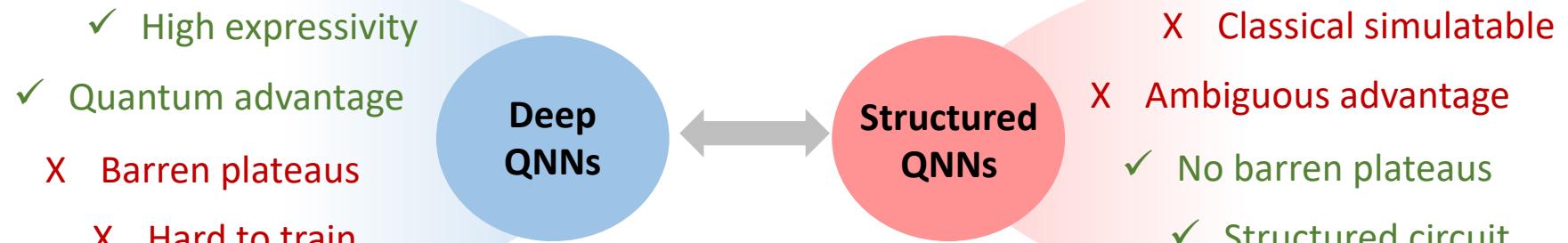


[1] Ragone, Michael, et al. "A Lie algebraic theory of barren plateaus for deep parameterized quantum circuits." *Nature Communications* (2024).

[2] Fontana, Enrico, et al. "Characterizing Barren Plateaus in Quantum ansätze." *Nature Communication* (2024).

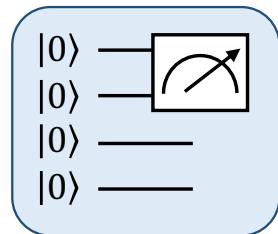
Standing at the crossroads

- Trade-off between expressivity of QNNs, and classical simulability [1]

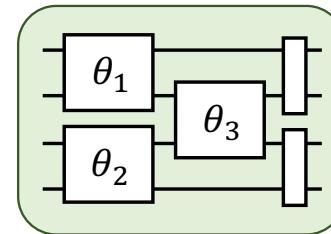


- Strategies for design deep and scalable QNNs that can avoid BP:

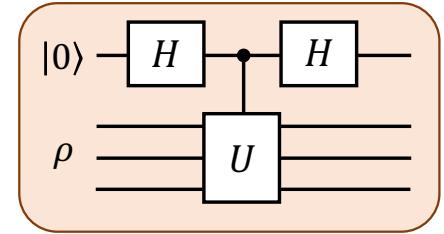
Localized states
and measurements



Relatively
simple circuit



Algorithmic
structure



[1] Cerezo, Marco, et al. "Does provable absence of barren plateaus imply classical simulability? Or, why we need to rethink variational quantum computing." *Nature Communications* (2025).

Quantum Recurrent Embedding Neural Networks

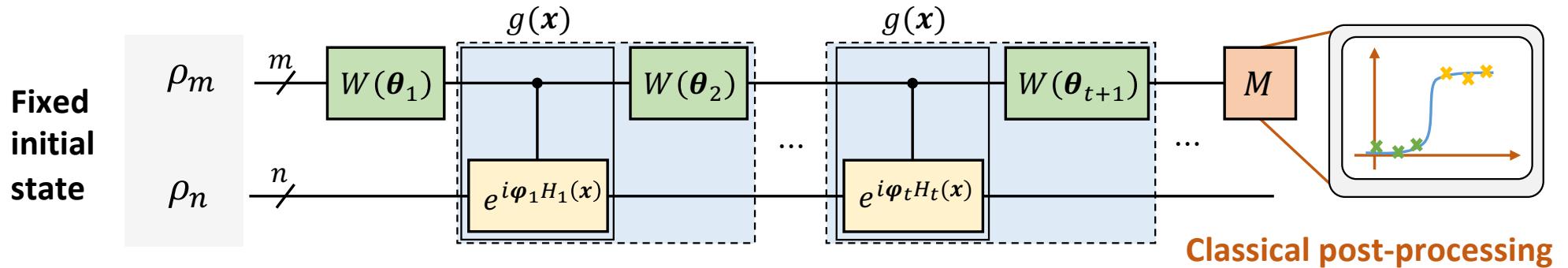
Preliminary

QRENN

Concluding remarks

Circuit framework of QRENN

Circuit Model of QRENN



- Assuming $\{\theta: W(\theta)\}$ spans $SU(2^m)$; Hamiltonian $[H_t(x), H_\tau(x)] = 0$, for any $t \neq \tau$; $m \in O(\log n)$

Theorem

- The DLA of QRENN can be decomposed into

$$\mathfrak{g}_{\text{QRENN}} \simeq \mathfrak{c} \oplus \mathfrak{su}(2^m)^{\oplus r},$$

where $\mathfrak{c} := \text{span}_{\mathbb{R}}\{iI_m \otimes H_t(x) : t \in [T]\}$

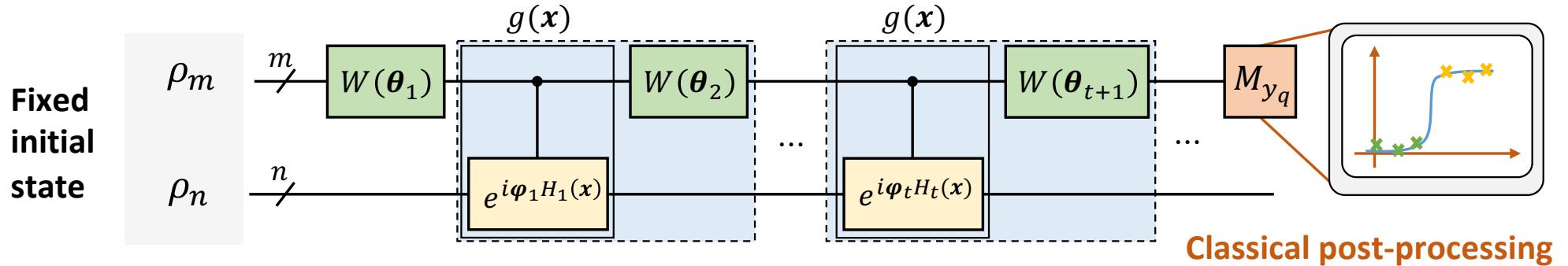
The control embedding makes the DLA a direct sum of $\mathfrak{su}(2^m)$

- r is the number of distinct *joint eigenspaces* from $\{H_t(x)\}_t$

Simple algebraic structure and hard to simulate classically ☺

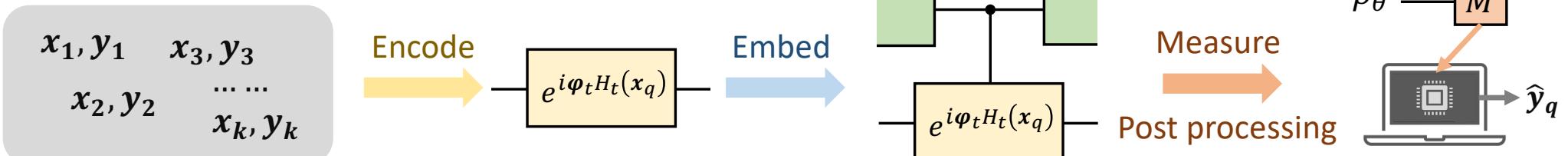
What can we do with QRENN?

Circuit Model of QRENN



- By choosing suitable measurement M , we can solve quantum supervised learning tasks using QRENN.
- The circuit contains the QSTV primitives; $H_t(x)$ are generally not sparse; Decision function can have high degrees (BQP-complete even with $m \in \mathcal{O}(\log n)$ [1][2])

Dataset



[1] Montanaro, Ashley, and Changpeng Shao. "Quantum and classical query complexities of functions of matrices." *Proceedings of the 56th Annual ACM Symposium on Theory of Computing*. 2024.

[2] Gharibian, Sevag, and François Le Gall. "Dequantizing the quantum singular value transformation: hardness and applications to quantum chemistry and the quantum PCP conjecture." *Proceedings of the 54th annual ACM SIGACT symposium on theory of computing*. 2022.

Quantum supervised learning

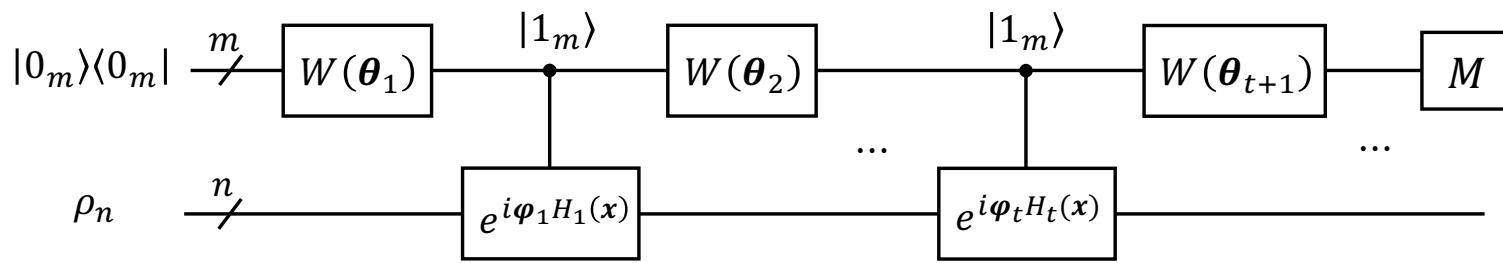
- Given a batch training set $\mathcal{T} = \{(y_q, x_q)\}_q$ with $|\mathcal{T}| = Q$

$$\text{MSE} = \frac{1}{Q} \sum_{q=1}^Q \left(y_q - \text{Tr} \left(U(x_q; \theta, \varphi) \rho_0 U(x_q; \theta, \varphi)^\dagger M \right) \right)^2$$

- Hard to estimate on quantum devices.**
- Inspired from quantum hypothesis testing, design M_1, M_2, \dots, M_k forming POVMs. We define the total loss

$$\mathcal{L}(\theta, \varphi) = 1 - \frac{1}{Q} \sum_{q=1}^Q \text{Tr} \left(U(X_q; \theta, \varphi) \rho_0 U(X_q; \theta, \varphi)^\dagger M_{y_q} \right)$$

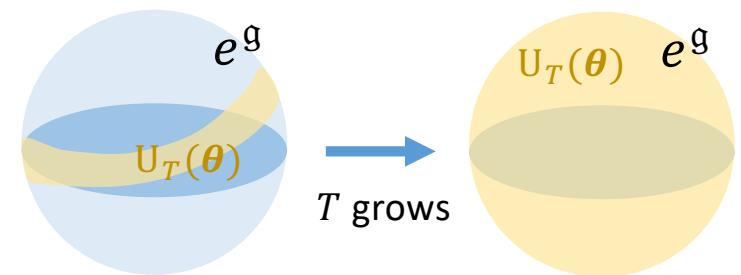
Main theorem on trainability



$$M_0 = \frac{I_{2^m} - Z^{\otimes m}}{2} \otimes I_{2^n};$$

$$M_1 = \frac{I_{2^m} + Z^{\otimes m}}{2} \otimes I_{2^n}$$

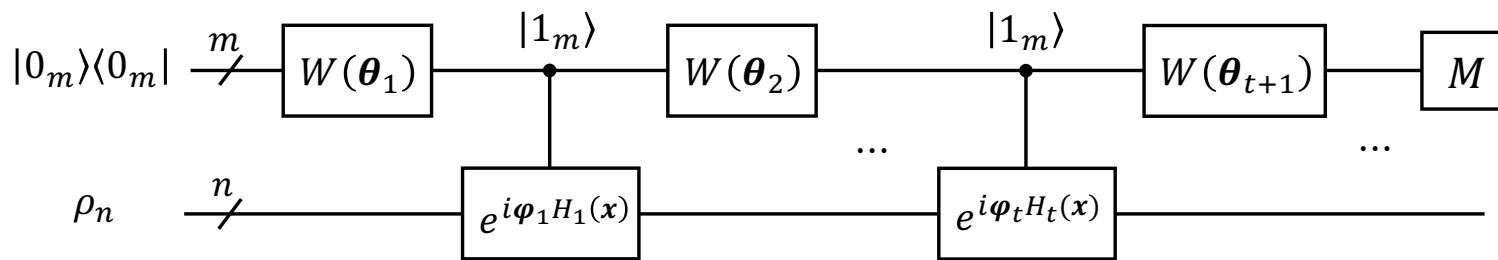
- To reach max. expressivity, assuming **sufficiently deep** model.
- For QNNs with depth $O(\text{poly}(n))$ [2], the circuit achieves 2-design of the compact Lie group and, hence, $\mathbb{E}_{\theta, \varphi} [\partial_{t, \mu} \mathcal{L}] = 0$ [1]
- By setting the number of slot T polynomially in n , random initialization can give elements fully mixed in e^g



[1] Ragone, Michael, et al. "A Lie algebraic theory of barren plateaus for deep parameterized quantum circuits." *Nature Communications* (2024).

[2] Fontana, Enrico, et al. "Characterizing Barren Plateaus in Quantum ansätze." *Nature Communication* (2024).

Main theorem on trainability



$$M_0 = \frac{I_{2^m} - Z^{\otimes m}}{2} \otimes I_{2^n};$$

$$M_1 = \frac{I_{2^m} + Z^{\otimes m}}{2} \otimes I_{2^n}$$

Theorem

- For $m \in O(\log n)$, if ρ_n has sufficiently large ‘overlap’, i.e., $\Omega\left(\frac{1}{\text{poly}(n)}\right)$ with the union of the image spaces of $\{H_t\}_t$, where $H_t = H_t(x)$, then,

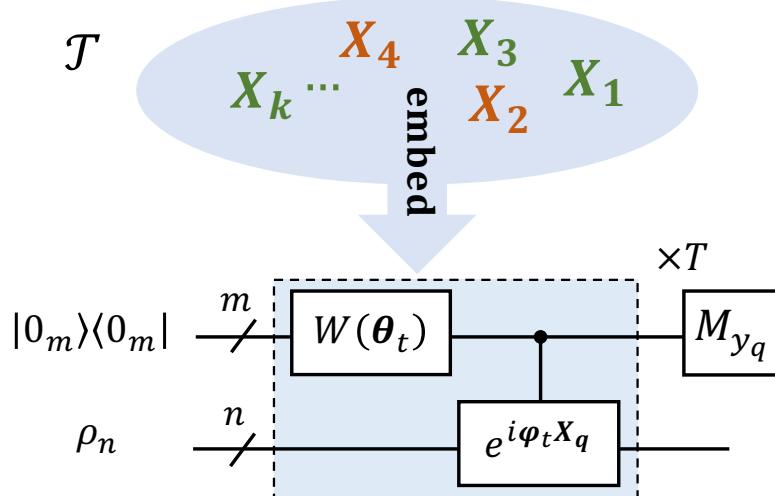
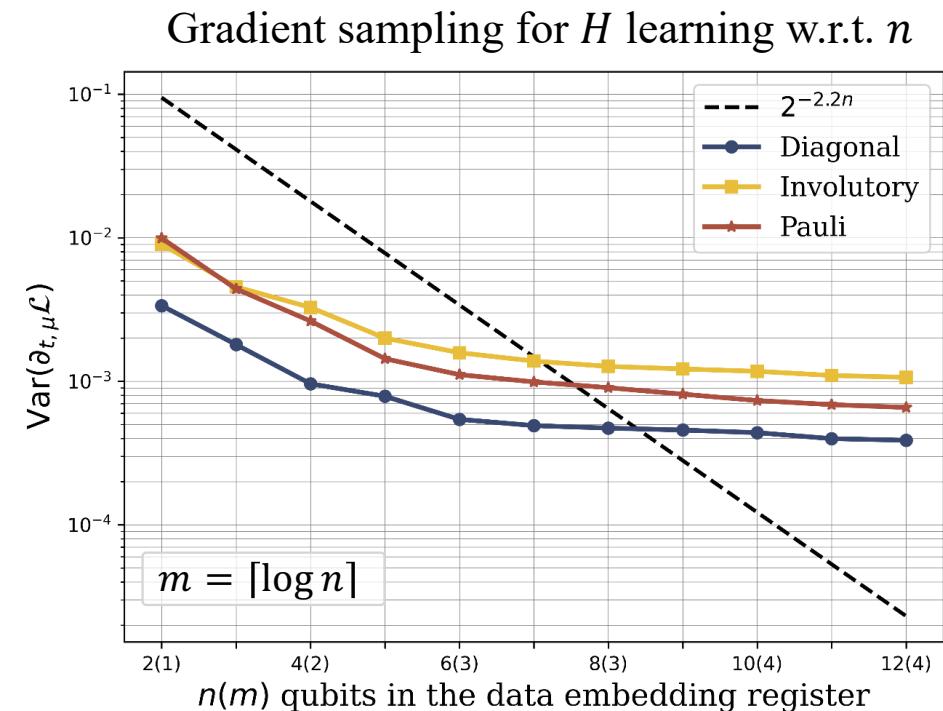
$$\text{Var}_{\theta, \varphi}[\partial_{t, \mu} \mathcal{L}] \geq \Omega\left(\frac{1}{\text{poly}(n)}\right)$$

- To prevent from BP, the dimension of data processing register must be restricted to $\log n$ scaled.
- The initial state ρ_n should serve as a ‘good’ probe that can interact with H_t ’s
- The overlap assumption is often **used in advanced quantum algorithm design** for achieving advantages.

Numerical results on trainability

- Task: to classify whether a Hamiltonian is Pauli, involutory or diagonal

Input: X_q → Output: class label y_q



- Gradient sampling experiments, 500 random initial parameters (θ, φ) of the model, ρ_n being fixed.
- For each dataset in diagonal, involutory and pauli sets, **50 Hamiltonians with feature** is generated and mixed with another **50 random Hermitian matrices** (from Haar unitary).

Supervised learning on quantum data

- Apart from classifying Hamiltonians, what else?

Problem

Given a cluster-Ising model with periodic boundary conditions

$$H(\lambda) = - \sum_{j=1}^N X_{j-1} Z_j X_{j+1} + \lambda \sum_{j=1}^N Y_j Y_{j+1}.$$

where X, Y and Z are Pauli matrices. SPT phase in the Hamiltonian model [4]:

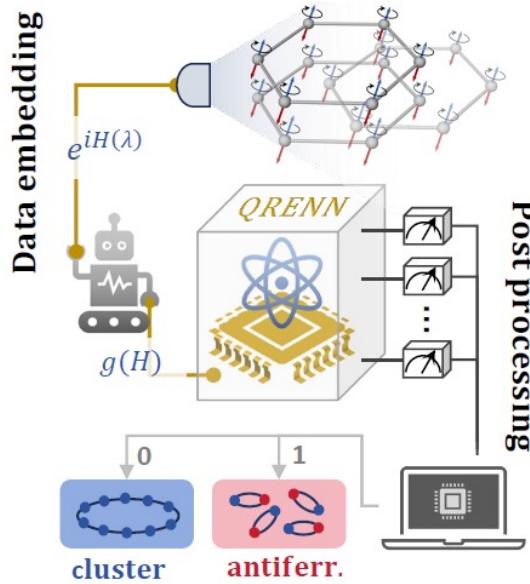
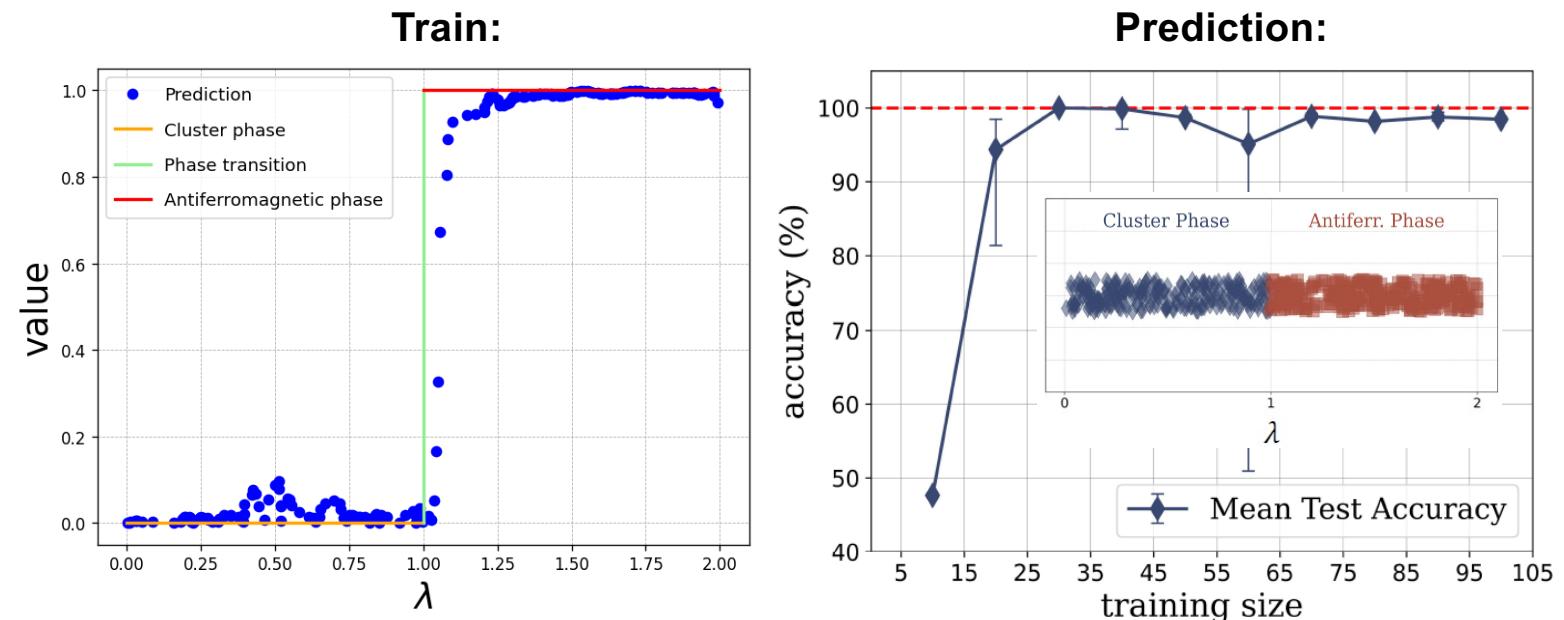
- A cluster : $\lambda < 1$
- An antiferromagnetic phase : $\lambda > 1$

Can we detect different symmetry-protected topological (SPT) phases of physical models via QRENN?

[4] Li, Weikang, Zhi-de Lu, and Dong-Ling Deng. "Quantum neural network classifiers: A tutorial." *SciPost Physics Lecture Notes* (2022): 061.

SPT phase detection

- QRENN model in learning SPT phase



Case 1: slots = 10, $m = 1$ and $n = 8$, initial state $|0\rangle \otimes |+\rangle^{\otimes 8}$. **Outcome:** Training 40 data uniformly generated by sampling $\lambda \in [0,2]$. Achieve 98.72% accuracy on 560 testing data.

Case 2: slots = 10, $m = 1$ and $n = 8$, initial state $|0\rangle \otimes |+\rangle^{\otimes 8}$. **Outcome:** Train with different data sizes. Find an improvement in performance as training size increases.

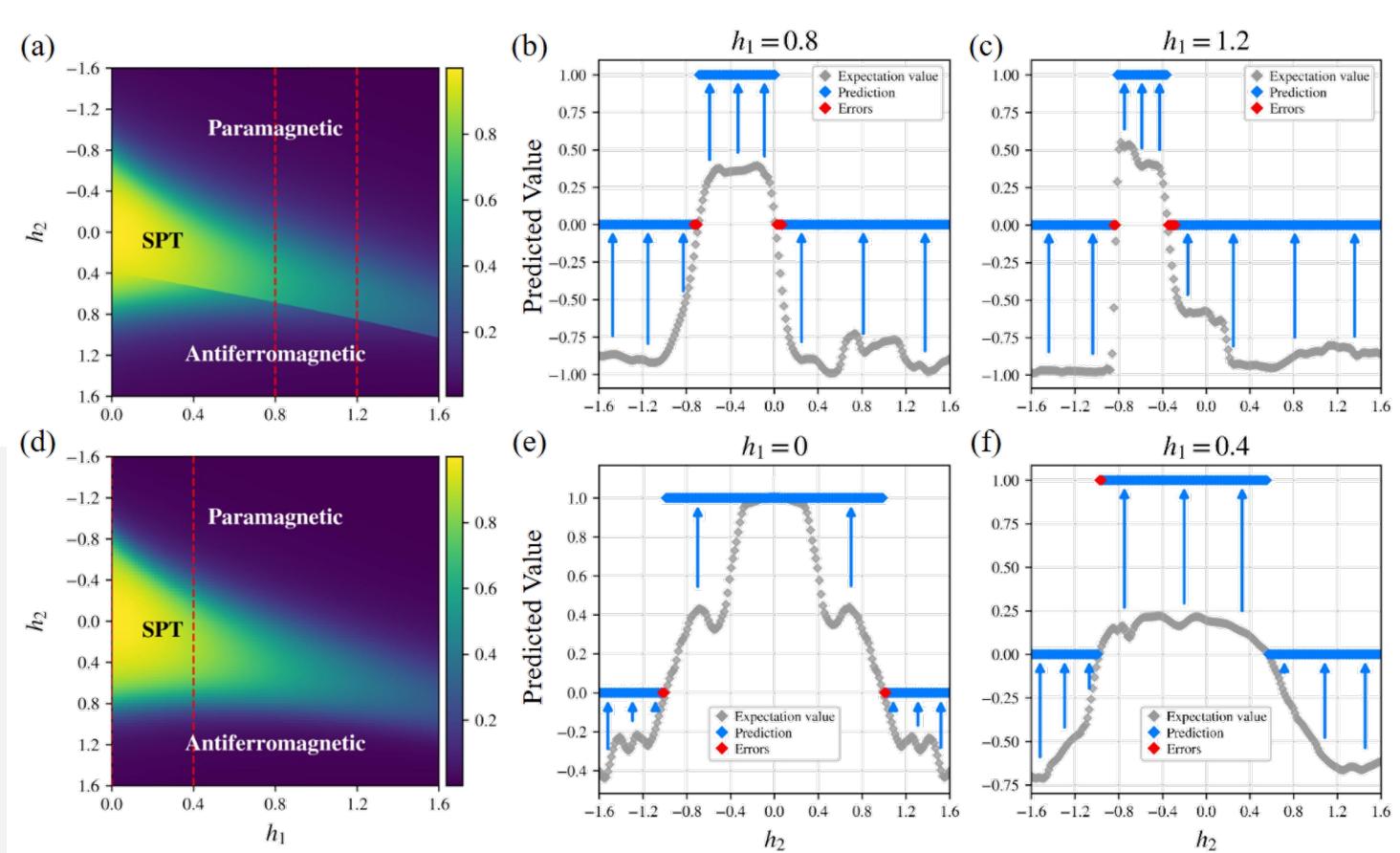
More on SPT phase detection

- Another model with two parameters:

$$H(h_1, h_2) = - \sum_{j=1}^N Z_{j-1} X_j Z_{j+1} + h_1 \sum_{j=1}^N X_j + h_2 \sum_{j=1}^{N-1} X_j X_{j+1}$$

Settings: $slots = 60$, $m = 1$ and $n = 7$ (a,b,c), $n = 9$ (d,e,f), initial state $|0\rangle \otimes |\psi(h_1)\rangle^{\otimes n}$.

Outcome: Training 100 data uniformly generated by sampling $h_2 \in [-1.6, 1.6]$. Achieve 98% accuracy on 200 testing data.



Concluding remarks

Preliminary

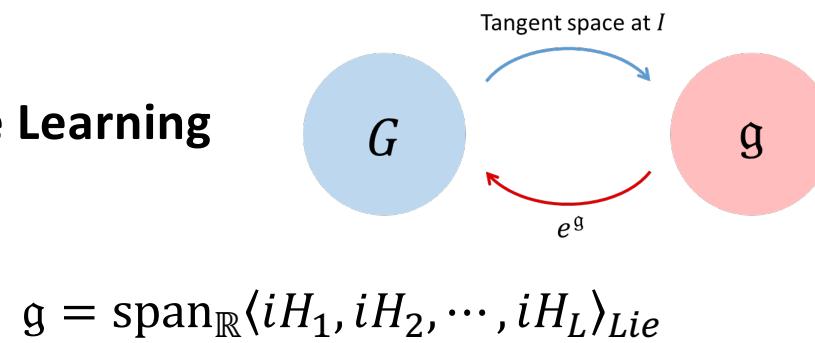
QRENN

Concluding remarks

Conclusion

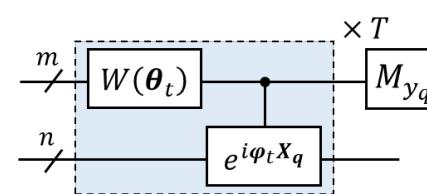
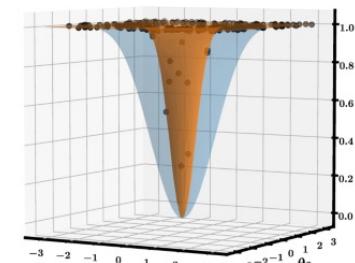
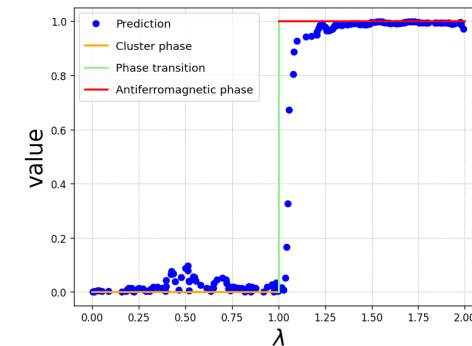
- **Recent developments in the Quantum Machine Learning**

- Quantum neural networks
- Dynamical Lie algebra for barren plateaus



- **Quantum Recurrent Embedding Neural Network**

- Inspiration to QNNs design \Rightarrow QRENN
- Can avoid BP in quantum supervised learning
- Application in SPT phase detection



Outlooks

- A more rigorous proof on the BQP-completeness of the model.
- The control embedding can be hard to realized physically.
 - Any other simpler embedding method?
- Other thoughts of Quantum Recurrent Embedding Neural Network
 - Treat it as a quantum neuron, can we build up larger structures?
 - Application in quantum sensing?
 - Efficient warm-start on initial probe state

~Thanks for watching~

QUAIR Group

香港科技大学(广州)
THE HONG KONG UNIVERSITY OF SCIENCE
AND TECHNOLOGY (GUANGZHOU)

