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Quantum Neural Networks
Classical NNs
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Quantum Neural Networks
• QNNs have various applications in Quantum Machine Learning (QML) [1]

[1] Cerezo, Marco, et al. "Challenges and opportunities in quantum machine learning." Nature computational science 2.9 (2022): 567-576.

QNNs
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Quantum sensing, predict properties, 
compiling circuits, … …
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Dynamical Lie algebra

[1] Ragone, Michael, et al. "A Lie algebraic theory of barren plateaus for deep parameterized quantum circuits." Nature Communications (2024).

• For QNN expressed as 𝑈 𝜽 = ∏#$%
& ∏'$%

( 𝑒)*!,#+! , the DLA of the circuit is defined as [1],

𝔤 = spanℝ 𝑖𝐻%, 𝑖𝐻-, ⋯ , 𝑖𝐻& &). = spanℝ 𝑖𝒢 &).

• In the finite case, 𝔤 = 𝔠⊕ 𝔤%⊕𝔤-⊕⋯⊕𝔤/ where each 𝔤0 is simple and 𝔠 is the center of 𝔤.

[2] Fontana, Enrico, et al. "Characterizing Barren Plateaus in Quantum ansätze." Nature Communication (2024).

• If the QNN is deep enough to form a unitary 2-design on 
𝑒𝔤 ⊂ 𝒰 𝑑 (compact Lie group) [2]

𝔼𝜽 𝜕#,'ℒ 𝜌, 𝑂 = 0 Var𝜽 𝜕#,'ℓ 𝜌, 𝑂 ∈ 𝒪 @
0

1
𝑑𝔤$-

• ℓ 𝜌, 𝑂 = Tr 𝑈 𝜽 𝜌𝑈3 𝜽 O ; 𝐻𝔤 is the projection of 𝐻 onto 𝔤.

The Lie algebraic theory of QNNs unifies
the study of various sources of barren
plateaus (BP).

BP

• DLA contains important information that drive or generate the system's evolution over time.



Standing at the crossroads

• Trade-off between expressivity of QNNs, and classical simulatability [1]

[1] Cerezo, Marco, et al. "Does provable absence of barren plateaus imply classical simulability? Or, why we need to rethink variational quantum computing." Nature Communications (2025).

Deep 
QNNs

ü High expressivity

ü Quantum advantage

X Barren plateaus

X Hard to train

Structured 
QNNs

X Classical simulatable

X Ambiguous advantage

ü No barren plateaus

ü Structured circuit

• Strategies for design deep and scalable QNNs that can avoid BP:
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• Assuming {𝜽:𝑊 𝜽 } spans SU 2' ; Hamiltonian 𝐻( 𝒙 , 𝐻) 𝒙 = 0, for any 𝑡 ≠ 𝜏; 𝑚 ∈ 𝑂 log 𝑛

• The DLA of QRENN can be decomposed into 

𝔤*+,-- ≃ 𝔠⊕ 𝔰𝔲 2' ⊕ / ,

where 𝔠 ≔ spanℝ 𝑖𝐼' ⊗𝐻( 𝒙 ∶ 𝑡 ∈ 𝑇

• 𝑟 is the number of distinct joint eigenspaces from 𝐻((𝒙) (

Theorem

Circuit framework of QRENN

Circuit Model of QRENN
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The control embedding makes the DLA 
a direct sum of 𝔰𝔲 20



What can we do with QRENN?

Circuit Model of QRENN
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• By choosing suitable measurement 𝑀, we can solve quantum supervised learning tasks using QRENN.
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• The circuit contains the QSTV primitives; 𝐻((𝒙) are generally not sparse; Decision function can have high 
degrees (BQP-complete even with 𝑚 ∈ 𝒪(log 𝑛) [1][2]) 

[1] Montanaro, Ashley, and Changpeng Shao. "Quantum and classical query complexities of functions of matrices." Proceedings of the 56th Annual ACM Symposium on Theory of Computing. 2024.
[2] Gharibian, Sevag, and François Le Gall. "Dequantizing the quantum singular value transformation: hardness and applications to quantum chemistry and the quantum PCP conjecture." Proceedings of the 54th annual ACM SIGACT 
symposium on theory of computing. 2022.



Quantum supervised learning

• Given a batch training set 𝒯 = 𝑦1 , 𝒙1 1
with 𝒯 = 𝑄

MSE =
1
𝑄
,
123

4

𝑦1 − Tr 𝑈 𝒙1; 𝜽, 𝝋 𝜌5𝑈 𝒙1; 𝜽, 𝝋
6
𝑀

7

• Hard to estimate on quantum devices.

• Inspired from quantum hypothesis testing, design 𝑀3, 𝑀7, ⋯𝑀8 forming 
POVMs. We define the total loss 

ℒ 𝜽,𝝋 = 1 −
1
𝑄
,
123

4

Tr 𝑈 𝑋1; 𝜽, 𝝋 𝜌5𝑈 𝑋1; 𝜽, 𝝋
6
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Main theorem on trainability
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• For QNNs with depth 𝑂 𝑝𝑜𝑙𝑦 𝑛 [2], the circuit 
achieves 2-design of the compact Lie group and, 
hence, 𝔼𝜽,𝝋 𝜕(,;ℒ = 0 [1]

• By setting the number of slot 𝑇 polynomially in 𝑛, random initialization can give elements fully 
mixed in 𝑒𝔤

𝑒𝔤 𝑒𝔤

U3(𝜽)

U3(𝜽)

𝑇 grows

• To reach max. expressivity, assuming sufficiently deep model.

[1] Ragone, Michael, et al. "A Lie algebraic theory of barren plateaus for deep parameterized quantum circuits." Nature Communications (2024).
[2] Fontana, Enrico, et al. "Characterizing Barren Plateaus in Quantum ansätze." Nature Communication (2024).



Main theorem on trainability

𝔼𝜽,𝝋 𝜕(,5ℒ

• For 𝑚 ∈ 𝑂 log 𝑛 , if 𝜌= has sufficiently large ‘overlap’, i.e., Ω %
>?@1 =

with the union of the image 

spaces of 𝐻( (, where 𝐻( = 𝐻( 𝒙 , then,
Var𝜽,𝝋 𝜕(,;ℒ ≥ Ω

1
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Theorem
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• To prevent from BP, the dimension of data processing register must be restricted to log 𝑛 scaled.

• The initial state 𝜌= should serve as a ‘good’ probe that can interact with 𝐻(’s

• The overlap assumption is often used in advanced quantum algorithm design for achieving advantages.  



Numerical results on trainability

• Gradient sampling experiments, 500 random initial parameters (𝜽,𝝋) of the model, 𝜌= being fixed.
• For each dataset in diagonal, involutory and pauli sets, 50 Hamiltonians with feature is generated and 

mixed with another 50 random Hermitian matrices (from Haar unitary).

𝑚 = log 𝑛

Gradient sampling for 𝐻 learning w.r.t. 𝑛• Task: to classify whether a Hamiltonian is 
Pauli, involutory or diagonal
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Supervised learning on quantum data

• Apart from classifying Hamiltonians, what else?

[4] Li, Weikang, Zhi-de Lu, and Dong-Ling Deng. "Quantum neural network classifiers: A tutorial." SciPost Physics Lecture Notes (2022): 061.

Given a cluster-Ising model with periodic boundary conditions

𝐻 𝜆 = −∑BC%D 𝑋BE%𝑍B𝑋BF% + 𝜆∑BC%D 𝑌B𝑌BF%.

where X, Y and Z are Pauli matrices. SPT phase in the Hamiltonian model [4]:

Problem

• An antiferromagnetic phase : λ > 1. • A cluster : λ < 1 

Can we detect different symmetry-protected topological (SPT) phases of physical models via 
QRENN?



SPT phase detection
• QRENN model in learning SPT phase

Train: Prediction:

Case 1: slots = 10, 𝑚 = 1 and 𝑛 = 8, initial state 0 ⊗ + ⊗8. Outcome: Training 40 data uniformly generated 
by sampling 𝜆 ∈ 0,2 . Achieve 98.72% accuracy on 560 testing data.

Case 2: slots = 10, 𝑚 = 1 and 𝑛 = 8, initial state 0 ⊗ + ⊗8. Outcome: Train with different data sizes. Find 
an improvement in performance as training size increases.



More on SPT phase detection

Settings: 𝑠𝑙𝑜𝑡𝑠 = 60, 𝑚 = 1 and 
𝑛 = 7(a,b,c), 𝑛 = 9(d,e,f) , initial 
state 0 ⊗ 𝜓(ℎ%) ⊗2.

Outcome: Training 100 data 
uniformly generated by sampling 
ℎ& ∈ −1.6,1.6 . Achieve 98% 
accuracy on 200 testing data.

• Another model with 
two parameters:

𝐻 ℎ", ℎ$
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'
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%&"
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Concluding remarks

Preliminary QRENN Concluding remarks



Conclusion

• Recent developments in the Quantum Machine Learning

• Quantum neural networks

• Dynamical Lie algebra for barren plateaus

• Quantum Recurrent Embedding Neural Network

• Inspiration to QNNs design ⇒ QRENN

• Can avoid BP in quantum supervised learning 

• Application in SPT phase detection

𝔤 = spanℝ 𝑖𝐻%, 𝑖𝐻-, ⋯ , 𝑖𝐻& &).



Outlooks

• A more rigorous proof on the BQP-completeness of the model.

• The control embedding can be hard to realized physically.

• Any other simpler embedding method?

• Other thoughts of Quantum Recurrent Embedding Neural Network

• Treat it as a quantum neuron, can we build up larger structures?

• Application in quantum sensing?

• Efficient warm-start on initial probe state



~Thanks for watching~

QUAIR Group


