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H(p) is linear in p

1: tuneable parameters
Zr(p) : partition function
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where (); are conserved quantities (e.g. particle number)
w: chemical potential
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Semidefinite optimisation

Given d X d Hermitian matrices C, {4;}

Solve
a = min {Tr[CX] : Tr[A; X] = b; Vi € [c|}

b, € R

X >0




Modified semidefinite optimisation

ap = min Tr(CX] This is equivalent to solving
s.t. Tr[A;X] = b;, Vi for the density matrix p
Tr[X] <R




Quantum thermodynamic system

Given a tuple (H,Q1, - ,Q.) of d X d Hermitian matrices

Describes a quantum thermodynamical system

- Hamiltonian H
- Conserved non-commuting charges Q;, so [Q;, @;] # 0
- e.g. spin, angular momentum



Energy minimisation

Solve

Energy Minimization

B(Q,q) = min (H)

S.t. <Q3>p — qg',\_f‘i

P

Energy minimisation problem in quantum thermodynamics
equivalent to semidefinite optimisation



Energy minimisation and free energy minimisation

Real physical systems operate in finite temperature, so free energy
minimisation is much more natural

Pr(Q,q) = min {(H), —TS(p) : (Qs), = a: Vi € [c]}

pED4

where (H) —T'S(p) is the free energy and the von Neu-
mann entropy is defined as

S(p) = —Trlplnp].



Energy minimisation and free energy minimisation

Free energy very closely approximates energy at low temperature

0<S(p) <Ind = E(Q,q) > Fr(Q,q) > E(Q,q) —Tnd

Zero temperature limit: %iiﬂo Fr(Q,q) = E(9,q)

To have error €, use T' ~ —, d = 2", n = number of qubits



Free energy minimisation subject to constraints same as

maximisation of function of chemical potential

Fr(Q,q) = min {Tx[Hp| - TS(p) : Tr{Qip] = q: Vi € [d])

(Lagrange multipliers) 2eDy

min {Tr[Hp] —TS(p) + sup Zm (¢ — Tf[QiP])}

(Sup outside) = min sup ¢ u-q+ Te[Hp] — TS(p) — > pi Tr[Qup) ¢
pEDg peRe Pt

7N
=~

sup min { u-q+ Tr|Hp| —TS(p) — ;Tr|Q;
sup min o g+ Te[Hp) = TS(p) = 3 i Tr[Qi]

(Minimax)

\ 1=1 y



Free energy minimisation subject to constraints same as

maximisation of function of chemical potential

Some algebra:

c Recall:
min {u -q+Tr[Hp] = TS(p) — > _ i Tr[Qz'p]}
1=1
=T min {% — S(p) — Tr[pln pr ()] —In Zcr(u)} o) = exp
. [Hg Zr(p) T

=T min {T + D(pllpr(1)) — In Zr(u)}

— 11-q—TnZp(p). Quantum (Umegaki) relative entropy:
D(w|7) = Trjw(Inw — In7)].
D(wl||T) >0

Dw|1) =0 <<= w=r

p = pr is the minimiser!




Free energy minimisation subject to constraints same as

maximisation of function of chemical potential

Since Fr(9Q,q) = min {(H)p —TS(p): (Qi), = ¢: Vi € [c]}

pEDg

= sup {p-q—TInZ7p(p)}
peRe

therefore our task is to prepare the state

where p is determined by maximising the function f(u) = pu-q—TIn Zp(u)



Optimising value of chemical potential

Fr(Q,q) = sup {n- ¢ —TInZyp(p)}
peRe

Objective function: f(p):=p-q—TnZp ()

0
6ﬂi

Gradient: (w-q—ThzZp(p) =a —(Qi) .,



Optimising value of chemical potential

32
OO

1
1) = 7 [ ds Telpr(e) Quor ('~ Q,) = 7 Qe (@)

f(p) = =I5 (w),

Kubo-Mori information matrix Ix () >0 =

- Hessian of f(u) is negative semi-definite and f(u) is concave in p
- maximisation of f(u) can be solved (globally) via gradient ascent w.r.t u



Overview of basic idea

Solve
Energy Minimization
ergy | mizatio Dual
E(Q,C]) — IIin <H>P . . . . .
pED; | Chemical Potential Maximization
s.t. (Qi)p = qi, Vi
_ Fr(Q,q) =max p-q—TlnZr(u)
Duality g
Heating Cooling
€ Solve usin
Set 1" = 8
Primal 4Ind gradient ascent
Free Energy Minimization J
. — mi _ €
F1(Q,q) = min (H), — TS(p) ~ E(Q,q)

s.t. (Qz)p = qz-,\‘/i



Gradient ascent algorithm (classical algorithm)

Algorithm 1 minimize_energy(H, (Q;):,(qi)i, L,d, €, T)
1: Input:

Observables H and (Q:)ice]
Constraint values (¢;)ie[c]
Smoothness parameter L
Hilbert space dimension d
Desired error € > 0

Radius r: An upper bound on ||u*||, where u* is
the optimal solution to (14) for T'= =

4lnd
£
Set T + Tid

Initialize u° < (0,...,0)
Set learning rate n € (0,1/L]
Choose M = [L7/e]

for m =1 to M do

pm = p" T+ (g — (@) um—1
T ( pr(p ))
return p g+ (H—p™ . Q)

pr (kM)

Reservoir

— .
‘ N\
( .

. System pr(u) /

N

Charge exchange at boundary
mediated by p value

2
.\-/



Gradient ascent algorithm (classical algorithm)

Algorithm 1 minimize_energy(H, (Q;):,(qi)i, L,d, €, T)

1: Input:

Observables H and (Q:)ic[q]
Constraint values (¢;)ie[c]
Smoothness parameter L
Hilbert space dimension d
Desired error € > 0

Radius r: An upper bound on ||u*||, where u* is
the optimal solution to (14) for T' =

Set T + 41nd

Initialize u° < (0,...,0)

Set learning rate n € (0, 1/L]

Choose M = [L7/e]

for m =1 to M do

pm = p" T+ (g — (@) um—1
T ( pr(p ))

return g™ g+ (H—p™ - Q),. )

€
4Ind

Smoothness parameter L >
largest value of Hessian of f(u)

2c
Can set: L = — max ||Q;
- max Qi

Number of iterations (complexity):
M = [EW
€
8crind
g2

ma Q| ]



Hybrid classical-quantum algorithm

Suppose we have an n-qubit system with large n

Need to estimate (H),, and (Q),, on quantum device

Requirements:
1) Efficient preparation of pr(u) at T' ~ ¢/n

2) Efficient measurement of observables (H),,. and (Q),

T




Assumptions

Each observable H, (); are efficiently measurable on quantum device when

H =) hyoy
7

Q'i — E :a’fi,j'aj':
7

for which the number of non-zero terms in each sum is
polynomial in n and ||hl|1, ||a;||1 are poly(n)

Sampling complexity to estimate observables to precision € with success proba-

bility 1 — &: O(In(1/8)|[1/€2), O(In(1/5) |as||}/e?)



Gradient ascent algorithm (hybrid classical-qguantum algorithm)

Algorithm 2 minimize energy(H, (Q;):, (¢:):,d,€,6,7)
1: Input:
e Observables H and (Q;)ic[¢ (as given in (39)—(40))
e Constraint values (gi):c[q
e Hilbert space dimension d
e Accuracy € > 0
e Error probability § € (0,1)
e Radius r: An upper bound on ||p*|, where p* is

the optimal solution to (14) for T' = £ DO I]_Ot have perfeCt <Q> Va]_ues

. Initialize u° < (0,...,0)

: Set learning rate n as in (51) fOI' ev&]u&tion Of f(llz) gr&dienti

: Set number of iterations, M, as in (52)

2

3

4 . .

5 for m —1 o M do use stochastic gradient ascent
7

3

 — 1 to0 ~ do

Q: < estimate_obs(u™ ', (ai ;)5 €, )
71" g — Qs

end for

10: (Update: u™ < Hx(p™ ' +ng™ "))

15: return Output pM - g+ G




Gradient ascent algorithm (hybrid classical-qguantum algorithm)

Theorem: Sample complexity (number of pr preparations) required to esti-
mate the optimal (H) to precision € and success probability > 1 — ¢

O(cma}c{c, ,,,,2} ]nd||h||§ max; ||a,1-||éfln(%) )

g4

Second-order algorithms also possible using quantum estimator for elements of
Kubo-Mori ks matrix



Original semidefinite optimisation problem

Back to solving original semidefinite optimisation problem with Tr(X) < R

Solve '
SDP Sample complexity:
ap — 1}1;1(} TI‘:CX] A ) 5 A .
s.t. Tr[A; X] = b;, Vi of & max{c,?} n ||h||] max; [|a;|; In(5)
Tr[X] <R g4




Examples

Constrained free energy minimization for the design of thermal
States and stabilizer thermodynamic systems

(arXiv: 2508.09103)

Michele Minervini, Madison Chin, Jacob Kupperman, Nana
Liu, lvy Luo, Meghan Ly, Soorya Rethinasamy, Kathie Wang,
and Mark M. Wilde



Quantum Heisenberg model

Describes interacting spin systems on a lattice and are essential for understand-

ing magnetic materials
H(G,J) =

PN S g (X(i)®X(j)_|_y(’i)®y(j)_|_Z(i)®z(j))
{i.5}€E
O—O0—0—0—0 ™

Total magnetisation:

| > x@=XxY, Y@ =YY, 26)=Y 29
2D TN i < s
>< >< These all commute individually with H(G, J)

™ ~ ) but not each other, so form conserved non-commuting charges



2D Heisenberg NNN, 4 Qubits
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The figure depicts the logarithm of the error metric in (118) versus the logarithm of the number of iterations, for
the task of constrained energy minimization for the two-dimensional, four-qubit quantum Heisenberg model with nearest- and
next-to-nearest-neighbor interactions and constraints on the total magnetizations in the x, y, and z directions set to be 1, 0,
and 1, respectively. All of the algorithms converge, but the HQC algorithms, shown as the average over five independent runs
with shaded regions denoting one standard deviation, require more iterations to converge due to sampling noise inherent in
them.



Stabiliser thermodynamic systems

Definition (Stabilizer thermodynamic system). Let S

denote a stabilizer code that encodes k logical qubits into A stabiliser S is an abelian subgroup

n physical qubits, has commuting stabilizer generators of the Pauli group not containing —I
S1,...,5,_k, and has the set £ of logical operators.
We define a stabilizer thermodynamic system to have a Code space:
) : ) on
Hamiltonian H given by C = span{hb) c (Cz) L Sp) = [) VS e S}

n—k
H:=-) S, Set of logical operators:
=1

L = {L € Pauli group : LS = SL}

where v; > 0, and conserved, non-commuting charges

given by
) 7 @=0=151d

where L; ; € £ and o; ; € R, for all 4 € [¢] and j. [Qz: QJ] # 0

Qi =Y ai;Lij,
j



Perfect five-qubit error-correcting code

0 -
= —27
B>
+
W
|
W —4
Es)
o
—6 1 —— Classical-1st Order
HQC-1st Order
—— (lassical-2nd Order
— HQC-2nd Order

10° 10* 107 10°
Iteration (log scale)

The figure depicts the logarithm of the error metric in (118) versus the number of iterations, for all of the LMPW
algorithms (1st- and 2nd-order, and classical and HQC) for the task of constrained energy minimization for a stabilizer
thermodynamic system formed from the perfect five-qubit error-correcting code. The constraints on the logical operators
X, Y, and Z were set to 0.2, 0, and 0.5, respectively. All of the algorithms converge, but the HQC algorithms, shown as the
average over five independent runs with shaded regions denoting one standard deviation, require more iterations to converge
due to sampling noise inherent in them. For this simulation, we did not warm-start the algorithm according to the recipe from
Section V A, but we instead started with p, =1, yuy, =1, and p, = 1.



Summary

* Physical basis for why quantum thermal states with non-commuting
charges (a quantum Boltzmann machine) are important and natural
for solving semidefinite optimisation

Solve Primal Dual
Energy Minimization Free Energy Minimization Chemical Potential Maximization
E(Q,q) = min (H . — mi _
(2,9 min (H), ‘ Fr(Q,q) = min (H), —T'S(p) ‘ Fr(Q,q) = max pu-q— T'lnZr(p)
) , €R°
s.t. (Qi)p = ai, Vi T € s.t. (Qi)p = i, Vi _ "
~ n Gradient

descent

* Extension to continuous-variable systems? Broader classes of
SDPs? Thermodynamically-inspired implementation?
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Thank you and welcome to visit us in Shanghai Jiao Tong!

Shanghai Jiao Tong
University: s3I e Open postdoc positions available!

UnitaryLab internship and more
senior positions in company also
open!

Institute of Natural
Sciences

Global College (formerly
called University of
Michigan-Shanghai Jiao
Tong Joint Institute)

M Nana.Liu@quantumlah.org

www.nanaliu.weebly.com

Group website:
https://www.guantumaquintet.com/

35



https://www.quantumquintet.com/

	Slide 1: Quantum Boltzmann Machines:    a bridge between semidefinite optimisation and quantum thermodynamics
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8: Semidefinite optimisation: broad applications  
	Slide 9: Semidefinite optimisation 
	Slide 10: Modified semidefinite optimisation 
	Slide 11: Quantum thermodynamic system 
	Slide 12: Energy minimisation 
	Slide 13: Energy minimisation and free energy minimisation 
	Slide 14: Energy minimisation and free energy minimisation 
	Slide 15: Free energy minimisation subject to constraints same as maximisation of function of chemical potential  
	Slide 16: Free energy minimisation subject to constraints same as maximisation of function of chemical potential  
	Slide 17: Free energy minimisation subject to constraints same as maximisation of function of chemical potential  
	Slide 18: Optimising value of chemical potential 
	Slide 19: Optimising value of chemical potential 
	Slide 20: Overview of basic idea  
	Slide 21: Gradient ascent algorithm (classical algorithm)  
	Slide 22: Gradient ascent algorithm (classical algorithm)  
	Slide 23: Hybrid classical-quantum algorithm 
	Slide 24: Assumptions 
	Slide 25: Gradient ascent algorithm (hybrid classical-quantum algorithm)  
	Slide 26: Gradient ascent algorithm (hybrid classical-quantum algorithm)  
	Slide 27: Original semidefinite optimisation problem
	Slide 28: Examples 
	Slide 29: Quantum Heisenberg model 
	Slide 30
	Slide 31: Stabiliser thermodynamic systems 
	Slide 32
	Slide 33: Summary   
	Slide 34
	Slide 35

