Information scrambling and the learning landscape of a
quantum machine learning algorithm

Sabre Kais
Department of Electrical and Computer Engineering,

Chemistry and physics

NC State University
https://ece.ncsu.edu/people/skais/




Quantum Machine-Learning

Goal
Develop quantum algorithms
for
quantum simulations on quantum devices

Complex Many-Body Systems
* Electronic Structure

* Quantum Dynamics




Complex Many-Body Systems Quantum Machine-Learning

Microscopic systems made of many interacting
particles in chemistry, materials science, atomic
and molecular physics

Quantum Mechanics has to be used to provide an
accurate description of the system
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* QML Model: Restricted Boltzmann Machine (RBM)

* Implementation on a Quantum Device: Desighing a quantum circuit
with quadratic resource requirements (circuit width, circuit depth,
parameter count)

* Applications: Electronic structure of simple molecules and 2-D
materials such as Hexagonal Boron Nitride, Graphene, Molybdenum
Disulfide MoS2, Tungsten disulfide WS, Emerging Phenomena in
guantum and topological materials.

Focus on : Statistical Physics and Machine Learning

* Information Scrambling: Perspective and Out-of-Time-Order
Correlator (OTOC) and the learning landscape of a quantum machine
learning algorithm.



Electronic Structure of Molecules and
Materials on Quantum Computers

Challenge
Describing the nontrivial correlations encoded in the
exponential complexity of the many-body wave function




Goal: Understanding the properties of quantum many-body systems
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Goal: Understanding the properties of quantum many-body systems
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Quantum Machine-Learning

Deep Learning and Artificial Neural Network
“Restricted Boltzmann Machine (RBM)”

R.G. Melco et al. Nature Physics, 15, 887 (2019)

Wavefun(:tlon p(V) — ‘(V‘ T) ‘ 2 Carleo & Troyer, Science 355, 602 (2017)



NETWORK ARCHITECTURE (RESTRICTED BOLTZMANN MACHINE ANSATZ)

Hidden nodes (m) Phase node
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CONSTRUCTION OF AMPLITUDE USING QUANTUM CIRCUIT
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CONSTRUCTION OF AMPLITUDE USING QUANTUM CIRCUIT

Visible nodes
n = 2

Hidden nodes
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Hidden layer Sign layer

Methodology: Summary

* The wavefunction can be expressed as:
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Resource Requirements }

No. of qubits No. of gates Variational parameter count

(m +n + mn) = O (mn) (m+n+mn)=0 (mn) | (m+3%n+ mn+ 2)=0 (mn)

Simulating the full RBM distribution classically will always
likely be Exponential but on a quantum computer will be Quadratic Resources.
Also RBM is a universal approximator for any probability density

Long, P. M.; Servedio, R. A. Restricted Boltzmann Machines are hard to approxi-

mately evaluate or simulate. ICML 2010 - Proceedings, 27th International Conference

on Machine Learning 2010, 703-710.




~ SYSTEM OF INTEREST (DRIVER) |

Could be a material, a molecule or any spin-lattice models
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OBJECTIVE

4 )

System —— H — I:C'i:": d
\_ Y, Hamiltonian matrix for the system in a chosen representation

Unit cell blocks of materials

DEFINITION OF THE PROBLEM

> Construct approximate eigenstates {’( X ) of H without the prohibitively
expensive exact diagonalization

» Filter eigenstates with symmetry operators based on user defined choices. This
means if the model admits then

{0,}i2k st [H,0;] =0 Vi e {1,2,..k}

grouping eigenstates based on eigenspaces of operators specified by the user



BACKBONE OF THE TALK

Implementation of Quantum Machine Learning for
Electronic Structure Calculations of Periodic Systems

on Quantum Computing Devices
S.H Sureshbabu, M. Sajjan, S. Oh and S. Kais

Hidden layer Si

Nature Comm. 9, 4195 (2018)

ARTICLE
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Quantum machine learning for electronic
structure calculations
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Hexagonal-Boron Nitride (h-BN )
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Implementation of Quantum Machine Learning for Electronic

Structure Calculations of Periodic Systems on Quantum Computing
Devices

Shree Hari Sureshbabu, Manas Sajjan, Sangchul Oh, and Sabre Kais™




Results

Implementation on IBM-Q hexagonal Boron Nitride
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Band Structure of 2-D materials
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Quantum Machine-Learning for Eigenstate Filtration in Two-
Dimensional Materials

Manas Sajjan, Shree Hari Sureshbabu, and Sabre Kais™
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VALENCE AND CONDUCTION BAND - RESULTS FOR MosS,
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Deeper Understanding of the Learning Process
(Connection to Statistical Physics)

Out-of-time-order correlator (OTOC) and scrambling of quantum information



Navigating the learning landscape of a
Quantum Machine Learning model through
rigorous correlation bounds

Information Scrambling Perspective
and
br- Manas Sal2t g ut-of-Time-Order Correlator (OTOC) Vinit Singh

PHYSICAL REVIEW RESEARCH 35, 013146 (2023)



How neural network exchanges information among sub-
units and how fast an initial excitation travel using
statistical correlators ?

What is the connection of the above point to information
theory ? Is there an information bottleneck which can
affect trainability ?

What are the universal features of such exchange of
information ?

Can we expedite training and construct better networks
using this
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Imaginary components of out-of-time-order correlator and information scrambling
for navigating the learning landscape of a quantum machine learning model

Manas Sajjan®, '+ Vinit Singh®_-%* Raja Selvarajan,>* and Sabre Kais® %347
! Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA
*Department of Physics and Astronomy, Purdue University, West Lafavyette, Indiana 47907, USA
}Department of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, USA
*Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, Indiana 47907, USA

™ (Received 30 August 2022; revised 13 January 2023; accepted 23 January 2023; published 27 February 2023)

We introduce and analytically illustrate that hitherto unexplored imaginary components of out-of-time order
correlators can provide unprecedented insight into the information scrambling capacity of a graph neural
network. Furthermore, we demonstrate that it can be related to conventional measures of correlation like quantum
mutual information and rigorously establish the inherent mathematical bounds (both upper and lower bound)
jointly shared by such seemingly disparate guantities. To consolidate the geometrical ramifications of such
bounds during the dynamical evolution of training we thereafter construct an emergent convex space. This
newly designed space offers much surprising information including the saturation of lower bound by the trained
network even for physical systems of large sizes, transference, and quantitative mirroring of spin correlation
from the simulated physical system across phase boundaries as desirable features within the latent subunits of
the network (even though the latent units are directly oblivious to the simulated physical system) and the ability
of the network to distinguish exotic spin connectivity (volume law vs area law). Such an analysis demystifies
the training of quantum machine learning models by unraveling how quantum information is scrambled through
such a network introducing correlation surreptitiously among its constituent subsystems and open a window into
the underlying physical mechanism behind the emulative ability of the model.



OUT-OF-TIME-ORDER CORRELATORS (OTOC)

A four-point temporal correlation function defined between sites (1,2) with local unitaries
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OTOC FOR THE NETWORK
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SYSTEMS TO STUDY (DRIVERS)

Our results will be primarily focused on two different spin-systems generically described as
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Sherrington-Kirkpatrick model
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EFFECT OF HIDDEN NODE DENSITY
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Summary of OTOC Work
 We analytically illustrate that the imaginary components of
OTOC can be related to mutual information

* We rigorously establish the mathematical bounds on
such quantities respected by the dynamical evolution
during training

 OTOC offers important insights into the training dynamics
by unraveling how quantum information is scrambled
through such a network introducing correlation among its
constituent sub-systems

PHYSICAL REVIEW RESEARCH 35, 013146 (2023)



Future Work

> |s it possible to leverage power of quantum devices into the
workflow? Do we see any advantage there?

» Can we design such a workflow for an arbitrary NQS given their
structural diversity ?

» Can we make the NQS encode both amplitude and phase of the
target and reduce storage keeping runtime and circuit
requirements polynomial and do better than previous algos ?



[ Quantum Machine Learning Algorithm }
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Introducing surrogate networks- Generalizability to arbitrary NOS

Concrete example with a given Neural Quantum State ( NQS)
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Polynomially efficient quantum enabled variational Monte Carlo for training neural-network
quantum states for physico-chemical applications

Manas Sajjan’,"? Vinit Singh’,""? and Sabre Kais* *

'Department of Chemistry, Purdue University, West Lafayette, IN 47907
2Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27606

arXiv:2412.12398v1



https://arxiv.org/abs/2412.12398v1

What do we achieve by defining a new surrogate ?

» We can map an arbitrary distribution associated with any NQS architecture to a single layer
of neurons (surrogate) with certain connectivity pattern. This lends generalizability

» The surrogate distribution is easy to sample. We can use the
form of the surrogate distribution to define a quantum enabled workflow for any NQS

» We can achieve variance reduction in the estimated observable using a proper choice of prefactor
p (X)) o x(U, X)@z(I(X), J(X))
Surrogate NQS

Original NQS
; ; CHYE) m 225X 0, TOO) Eroc B X)
(Hy(F) = IO _ 5 POR16:(0, X) 35w X ) 1(X). T(X)
T'r(p(X)) 5 o Py(X) |
5. (0. X)E}, (0. X)
Hiayx) = iy (5. 3)
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Usual worktlow for training to learn energy eigenstates
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— Our algorithm requires Rzz and single qubit gates to be implemented.
Since each Rzz has 2 CNOT, so CNOT depth is O(2n)
Comparison with previous known algorithm

# qubits Gate depth # measurement

O(m+n) O(n?) O(n*)

Best known quantum variational algorithms for chemistry — like
those using UCCSD ansatz has depth of O(n') and O(n?)
parameters yet achieves comparable accuracy. For other ansatz
types like HEA, HVA the depth is problem dependent and they are
often less expressive .
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Applications (Ground state learning in XX7)

~14 RBM . 1e-e-oee-o-oe
N = ::: RBM+ZVE .Sb" -6 ED
§ g’ oY § : il @ 2:;) B % RBM
A A VA =-2 ©
H ’] [0 Uz-l—l ’L Jz+1 + Aaz 02-}-1 2h az —lf prmmmnccnccccanaa =11 (A=-20)
) — 0.00000 0.00005 0.00010
7,996 1 P ~ 1-@\\
Ehoam{ A s V| SEEEEES
-7 \ L
- bl Yo a=-10)
0.0000  0.0002  0.0004  0.0006
~1038 115
~10.40 1 - e Iy
z ».. e’ \
2l=-1042 L g, 01 v Eeded
- _--"(A=0.0) o) L
=044 Frmmm s e s s e -1 (A=0.0)
0000 0002 0.004
A ~1445 74
‘-.’y z l-Q\
—~14.50 - 2 S \
# - RBM+ZVE | 0.008 - ' §|., > S o]\ At
4 RBM a3 X @l sy oo ¥ ] ®
0010 o As10) __ -1 @=10)
& 0.006 - B -1460 f2zzz222zzz2zs0
;71_8 * gl = . 0.000 0.002 0.004 0.006
< 4 - 2 ~199 o 1@
5 ~2 (.004 199 o
21~ 0.005 - ¥ o 2 ¥ o & |\ Ao 2
- A Zlm-200{ _-- e M NSNS NN
0.002 4 x e (A=2.0) T \ 7 ® \d \
Yo - wi{ T ~a1{ Ya=20 *
0.000 - % ® 0.000 1+~ o Ty & Lo
[ T Al T L] T Ll Ll L] L o-m 0.005 0.010 0 l 2 3 4 5 6 7
2.0 -1.0 0.0 1.0 2.0 -2.0 -1.0 0.0 L0 2.0 e Spin index(j)

A A

i 4 J Expm




Applications (Ground potential energy surface learning in molecular systems)
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Foray into the topology of poly-bi-[8]-annulenylene

Varadharajan Muruganandam®™? @ | Manas Sajjan®® | Sabre Kais®%2®

Cycloctatetraene poly-bi-[8]-annulenylene (1-D)
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Cheryl D, Stevenson JPD. Cyclooctatetraene-based cathode for
electrochemical cells. 2010. US Patent US20100288628A1.
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Conclusions

Restricted Boltzmann Machine (RBM) can be used to perform electronic structure calculations:
H2, H20, LiH, h-BN, graphene, Molybdenum disulfide(Mo0S2) and Tungsten disulfide (WS2)

We have quadratic resource requirements (circuit width, circuit depth, parameter count).
FSS combined with RBM can be used to implement quantum phase transitions on quantum devices.

We trained the network on various flavors of computation using not only a classical computer,
Qasm quantum simulator in Qiskit but also a real IBMQ machine

Our algorithm demonstrated very high accuracy when compared to the exact values obtained from direct
diagonalization.

QML is a promising approach for treating open quantum dynamics problems

Strikingly, the RBM representation for these states is remarkably efficient, in the sense that the number of
nonzero parameters scales only linearly with the system size
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