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Quantum Machine-Learning 

Goal
Develop  quantum algorithms

 for 
quantum simulations on quantum devices

Complex Many-Body Systems

• Electronic Structure
• Quantum Dynamics



Quantum Machine-Learning

Big Data

Learning

Task

Complex Many-Body Systems
Microscopic systems made of many interacting 

particles in chemistry, materials science, atomic 

and molecular  physics

Quantum Mechanics has to be used to provide an 

accurate description of the system
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• QML  Model:   Restricted Boltzmann Machine (RBM)

• Implementation  on a Quantum Device: Designing a quantum circuit 
with quadratic resource requirements (circuit width, circuit depth, 
parameter count)

• Applications:  Electronic structure of simple molecules and 2-D 
materials such as  Hexagonal Boron Nitride, Graphene, Molybdenum 

Disulfide  MoS2,  Tungsten disulfide WS2, Emerging Phenomena in 
quantum and topological materials. 

 Focus on : Statistical Physics and Machine Learning

• Information Scrambling: Perspective and Out-of-Time-Order 

Correlator (OTOC) and the learning landscape of a quantum machine 

learning algorithm.   

    



Challenge
Describing the nontrivial correlations  encoded in the 

exponential complexity of the  many-body  wave function

Electronic Structure  of Molecules and 
Materials on Quantum Computers



Goal: Understanding the properties  of quantum many-body systems 

Hilbert Space
Exponential Complexity

N-Spins   2^N configurations

N=80, Avogadro 1023 Average size 
of human 
protein is  300 
amino acid 
residues 



Goal: Understanding the properties  of quantum many-body systems 

Hilbert Space
Exponential Complexity

N-Spins   2^N configurations

Physical states usually only
 access a tiny corner of 
the entire Hilbert space

N=80, Avogadro 1023 Average size 
of human 
protein is 300 
amino acid 
residues 



Quantum Machine-Learning 
Deep Learning and Artificial Neural Network 

“Restricted Boltzmann Machine (RBM)”

R.G. Melco et al. Nature Physics, 15,  887 (2019)
Carleo & Troyer,  Science 355, 602 (2017)
 



NETWORK ARCHITECTURE (RESTRICTED BOLTZMANN MACHINE ANSATZ)



CONSTRUCTION OF AMPLITUDE USING QUANTUM CIRCUIT 

State at (a)

(a)



CONSTRUCTION OF AMPLITUDE USING QUANTUM CIRCUIT 

(b)

State at (b)



Methodology: Summary
• The wavefunction can be expressed as:
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𝑥
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• Given Hamiltonian H and a trial state |φ〉 =
σ𝒙 φ(𝐱) |𝒙〉 we compute the expectation value:

⟨𝑯⟩ =
〈φ|H|φ〉 

〈φ|φ〉 



No. of  qubits No. of  gates Variational parameter count

(m +n + mn) = O (mn) (m +n + mn) = O (mn) (m +3n + mn + 2) = O (mn)

Simulating the full RBM distribution classically will always

 likely be Exponential but on a quantum computer will be  Quadratic Resources. 

Also RBM is a universal approximator for any probability density

Resource Requirements



Could be a material, a molecule or any spin-lattice models

Molecules Materials Spin-Lattice ModelsUltracold Atomic-Lattice

SYSTEM OF INTEREST (DRIVER)



OBJECTIVE

DEFINITION OF THE PROBLEM

Molecule

System 

Hamiltonian matrix for the system in a chosen representation

Spin models in magnetism

Unit cell blocks of materials

➢  Construct approximate eigenstates               of        without the prohibitively 
expensive exact diagonalization

➢  Filter eigenstates with symmetry operators based on user defined choices. This 
means if the model admits  then 

      grouping eigenstates based on eigenspaces of operators specified by the user



BACKBONE OF THE TALK

Nature Comm. 9, 4195 (2018)

Implementation of Quantum Machine Learning for 
Electronic Structure Calculations of Periodic Systems 

on Quantum Computing Devices

Journal of Chemical Information and Modeling, 61, 2667 (2021)

S.H Sureshbabu, M. Sajjan, S. Oh  and S. Kais

143 (44), 18426 October (2021)

https://pubs.acs.org/jcim


Results

The results of 
H2 (n = 4, m =8, 
iterations=10,000), 
LiH (n = 4, m = 8, 
iterations=40,000)
and  H2O (n = 6, m = 6, 
iterations=40,000)

Nature Comm. 9, 4195 (2018)

Rongxin Xia
Facebook



Hexagonal-Boron Nitride (h-BN ) Graphene

Journal of Chemical Information and Modeling, 61. 2667 (2021)



Results Implementation on IBM-Q hexagonal Boron Nitride

Graphene 



Band Structure of 2-D materials

Side view
Top view

Dr. Manas Sajjan
Molybdenum disulfide MoS2

Tungsten disulfide WS2



VALENCE AND CONDUCTION BAND - RESULTS FOR MoS2



Deeper Understanding of the Learning Process
 (Connection to Statistical  Physics)

     Out-of-time-order correlator (OTOC)  and scrambling of quantum information 
 



Navigating the learning landscape of a 
Quantum Machine Learning model through 

rigorous correlation bounds 

Information Scrambling Perspective
and 

Out-of-Time-Order Correlator (OTOC)  Dr. Manas Sajjan
Vinit  Singh

PHYSICAL REVIEW RESEARCH 5, 013146 (2023)



• How neural network exchanges information among sub-
units and how fast an initial excitation travel using 
statistical correlators ? 

• What is the connection of the above point to information 
theory ? Is there an information bottleneck which can 
affect trainability ? 

• What are the universal features of such exchange of 
information ? 

• Can we expedite training and construct better networks 
using this 





OUT-OF-TIME-ORDER CORRELATORS (OTOC)
A four-point temporal correlation function defined between sites (1,2) with local unitaries 

➢  If the sites (1,2) are far apart then 

      the supporting bases of operators 

      and           then                 will be 1

➢ However,  with time as the supporting 

bases of          grows then the overlap 

between the two operators will increase

     leading to different 

➢                   is a measure of how fast the 

      information has travelled leading to the

      overlap  under the effect of

      interactions  in the system      

Nature Physics | VOL 14 | OCTOBER 2018 | 988–990 |

Brian Swingle



OTOC FOR THE NETWORK

U2(0) evolves in time under the effect of 



Mutual Information

Von-Neumann Entropies







SYSTEMS TO STUDY (DRIVERS)
Our results will be primarily focused on two different spin-systems generically described as  

SYSTEM A 

SYSTEM B 

Area law

Volume law

g=B/J0



SYSTEM OF

INTEREST (DRIVER)

NETWORK OF

INTEREST (LEARNER)

𝐻𝐷 𝑔 ψ 𝑋



are sampled from 

Sherrington-Kirkpatrick model





EFFECT OF HIDDEN NODE DENSITY

SYSTEM OF

INTEREST (DRIVER)

NETWORK OF

INTEREST (LEARNER)

𝐻𝐷 𝑔 ψ 𝑋

α1 =
𝑝1

𝑛
α2 =

𝑝2

𝑛



Summary of OTOC Work  

• We analytically illustrate that the imaginary components of 
OTOC  can be related to mutual information 

• We rigorously establish the  mathematical bounds on 
such quantities respected by the dynamical evolution 
during training

• OTOC offers important insights into the training dynamics 
by unraveling how quantum information is scrambled 
through such a network introducing correlation among its 
constituent sub-systems

PHYSICAL REVIEW RESEARCH 5, 013146 (2023)



Future Work

➢ Is it possible to leverage power of quantum devices into the 
workflow? Do we see any advantage there?

 
➢  Can we design such a workflow for an arbitrary NQS given their 

structural diversity ?

➢Can we make the NQS encode both amplitude and phase of the 
target and reduce storage keeping runtime and circuit 
requirements polynomial and do better than previous algos ?



Quantum Machine Learning Algorithm



Introducing surrogate networks- Generalizability to arbitrary NQS

Concrete example with a given Neural Quantum State  ( NQS)

Original NQS- RBM
Surrogate for k=2



arXiv:2412.12398v1

https://arxiv.org/abs/2412.12398v1


What do we achieve by defining a new surrogate ?

➢  We can map an arbitrary distribution associated with any NQS architecture to a single layer

of neurons (surrogate) with certain connectivity pattern. This lends generalizability

➢ The surrogate distribution is easy to sample. We can use the 
      form of the surrogate distribution to define a quantum enabled workflow for any NQS

➢  We can achieve variance reduction in the estimated observable using a proper choice of prefactor

Original NQS
Surrogate NQS





Usual workflow for training to learn energy eigenstates

Initialize/Update 

parameter set

  

Choose sample configuration (v) 

from the distribution  

Construct each term of  

local energy average 

(v)/gradients as shown 

                              

Gradient updates

 below threshold

Print converged 

local energy 

average

No Yes









Quantum 
Spin Liquids 

Quantum 

Materials

Coherence

Entanglement 

2-D materials

Super-
conductivity

Topological 
Insulators

Weyl 
Semimetals

Quantum 
Hall Effect

Emerging 

Phenomena

Topological

Phenomena

Long Range 

Entanglement 



Cycloctatetraene poly-bi-[8]-annulenylene (1-D)                     2-D





51

Cheryl D, Stevenson JPD. Cyclooctatetraene-based cathode for 
electrochemical cells. 2010. US Patent US20100288628A1.



Conclusions

• Restricted Boltzmann Machine (RBM) can be used to perform electronic structure calculations:  

      H2, H2O, LiH, h-BN, graphene, Molybdenum disulfide(MoS2)  and  Tungsten disulfide (WS2)

• We have quadratic resource requirements (circuit width, circuit depth, parameter count).

• FSS combined with RBM can be used to  implement  quantum phase transitions on quantum devices.

  

• We trained the network on various flavors of computation using not only a classical computer, 

       Qasm quantum simulator in Qiskit but also a real IBMQ machine 

• Our algorithm demonstrated very high accuracy when compared to the exact values obtained from direct 
diagonalization. 

• QML is a promising approach for treating open quantum dynamics problems

 

Strikingly, the RBM representation for these states is remarkably efficient, in the sense that the number of 
nonzero parameters scales only linearly with the system size



NC STATE SUMMER SCHOOL 2026

Quantum Machine Learning for Complex Science and 
Engineering Problems 

NC State University June 1 – June 5, 2026 

Explore the Future of Quantum Machine Learning 
Join leading experts and emerging researchers for a week-long 
event focused on quantum machine learning (QML) and hybrid 

quantum-classical methods for solving real-world problems  



Funding 

http://www.chem.purdue.edu/kais

Kais Research Group 

Quantum Information 
and 

Quantum Computing
12 Ph.D. and 5 Post 
Chem, Phys, CS, ECE 



Thank You 
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