QCircuitBench: A Large-Scale Dataset for
Benchmarking Quantum Algorithm Design

Rui Yang Ziruo Wang Yuntian Gu Yitao Liang Tongyang Li

Peking University
Accepted by NeurlPS 2025

International Workshop on Quantum Boltzmann Machines (IW-QBM)
December 10, 2025

Contents

QCircuitBench

** Introduction & Preliminaries
+* Dataset Framework
»* Experimental Results

** Discussion & Conclusion

Contents

QCircuitBench

** Introduction & Preliminaries

Trends in Al applications: Al for Science

AlphaFold

Predicting the 3D
structure of proteins

based on amino acid
sequence.

2024 Nobel Prize
in Chemistry.

Median Co.r.m.s.d.q; (A)

G009

o -
| 1
G427
AlphaFold

Pr1eTeTe

Input sequence

G473

G129

G403

G032
G420
G480
G498
G488
G368
G324
G362
G253
G216

Genetic
y database

search

_, Structure >
database
search

Templates

AlphaFold Experiment

—r

. representation

r.m.s.d.q5 = 0.8A; TM-score = 0.93

MSA

(s,r;e)

IIII I

Pair
representation
(r,r.c)

-

—

AlphaFold Experiment
r.m.s.d. = 0.59 A within 8 A of Zn

Evoformer
(48 blocks)

) i £ 0 e ()
g -
—
N
R}
Structure
module
(8 blocks)
» I L] I I
Pair
—» " | representation ——p-
(rrc)
E—
l v

AlphaFold Experiment
r.m.s.d.gs = 2.2 A; TM-score = 0.96

High
confidence

l,(JW
confidence

l
.
)
C

-

3D structure

o

< Recycling (three times)

Trends in Al applications: Al for Science

AlphaProof

Achieved a silver medal in the IMO competition

Train

Points total

Informal @ . Formal 30
problems Formalize problems ’ Search

Formalizer ~100M Solver
network network

~M

AlphaZero

42
40

* 30

20

10

TOTAL

Gold

Silver

Bronze

Other

Human participant rank

Our system

Trends in Al applications: Al for Science —— LLM for Math

Generative Language Modeling for Automated
Theorem Proving

Stanislas Polu Ilya Sutskever
OpenAl OpenAl
spolu@openai.com ilyasu@openai.com
Abstract

We explore the application of transformer-based language models to automated
theorem proving. This work is motivated by the possibility that a major limitation
of automated theorem provers compared to humans — the generation of original
mathematical terms — might be addressable via generation from language models.
We present an automated prover and proof assistant, GPT-f, for the Metamath
formalization language, and analyze its performance. GPT-f found new short proofs
that were accepted into the main Metamath library, which is to our knowledge, the
first time a deep learning based system has contributed proofs that were adopted by
a formal mathematics community.

1 Introduction

Artificial neural networks have enjoyed a spectacularly successful decade, having made considerable
advances in computer vision [1, 2], translation [3, 4, 5], speech recognition [6, 7], image generation
[8,9./10,11,12], game playing [13,14,/15], and robotics [16,17]. Especially notable is the recent
rapid progress in language understanding and generation capabilities [18,/19, 20,21, 22].

With the possible exception of AlphaGo [13] and AlphaZero [23], reasoning tasks are conspicuously
absent from the list above. In this work we take a step towards addressing this absence by applying a
transformer language model to automated theorem proving.

& deepsecek

DeepSeek-Prover-V2: Advancing Formal Mathematical Reasoning via
Reinforcement Learning for Subgoal Decomposition

Z.Z. Ren*, Zhihong Shao*, Junxiao Song*, Huajian Xinf, Haocheng Wang', Wanjia Zhao', Liyue Zhang, Zhe Fu
Qihao Zhu, Dejian Yang, Z.F. Wu, Zhibin Gou, Shirong Ma, Hongxuan Tang, Yuxuan Liu, Wenjun Gao
Daya Guo, Chong Ruan

DeepSeek-Al

https://github.com/deepseek-ai/DeepSeek-Prover-V2

GOEDEL-PROVER-V2: SCALING FORMAL THEOREM
PROVING WITH SCAFFOLDED DATA SYNTHESIS AND
SELF-CORRECTION

Yong Lin'* Shange Tang' 2 *, Bohan Lyu® *, Ziran Yang' *, Jui-Hui Chung' *,
Haoyu Zhao' *, Lai Jiang” *, Yihan Geng?® *, Jiawei Ge', Jingruo Sun®,
Jiayun Wu?, Jiri Gesi® f, Ximing Lu?, David Acuna?, Kaiyu Yang® %,
Hongzhou Lin® *1, Yejin Choi? 4, Danqi Chen’, Sanjeev Arora', Chi Jin' *
!Princeton Language and Intelligence, Princeton University ~2NVIDIA
3Tsinghua University ~ “Stanford University Meta FAIR Amazon
"Shanghai Jiao Tong University ~ ®Peking University

Trends in Al applications:

Quadratic to superpolynomial
speedup [

Al for Science — Al forlQuantum Computing

|

Challenging to design manually

Dataset for guantum computing is solicited!

QCircuitBench

Contributions
First large-scale benchmark for Al-driven quantum algorithm design

* Task Formulation: a carefully designed framework capturing the core aspects of

guantum algorithm design.

* Rich Algorithm Coverage: covers 3 task suites, 25 algorithms, and 120,290 data points,
supporting complex, scalable algorithm implementation.

* Automatic Verification: built-in validation tools, enabling human-free, iterative

evaluation and interactive reasoning.

* Training Potential: demonstrates promise as a training dataset via preliminary fine-

tuning experiments.

Contents

QCircuitBench

+* Dataset Framework

Challenges

?

What challenges do we need to tackl

Formulation: Natural Language? verbose, ambiguous (X)
Math formulas? precise, but hard to verify automatically (X)

Oracle Paradox: Theoretically: black-box.
Experimentally: explicit construction with quantum gates.

Classical Procedure: Quantum Algorithm = Quantum Circuit +
Interpretation of Measurement Results.

Design Principles

Challenges Solutions
A code generation perspective
Formulation: Natural Language? (X) —_— & PErsp
Math formulas? (X) Represent quantum algorithms with quantum
programming languages.
_ A Separate oracle.inc library
Oracle Paradox: Theoretically: black-box. .

Preserve black-box abstraction while enabling

Experimentally: explicit gates.
compilation in OpenQASM.

Classical Procedure: Quantum Algorithm Require post-processing functions

= Quantum Circuit + Interpretation of Include number of shots to characterize
Measurement Results. query complexity.

QCircuitBench Framework

A general framework which formulates the key features of quantum algorithm design

task for Large Language Models.

/ QCircuitBench Dataset \

Problem Description Dataset Creation
(Natural language + Latex math formulas) (Python code)

\Generation Codel
Verification Function (@iskit code)
(Case test) 2

m Algorithm Circuit Oracle/Gate Definition
I (Ryrhonicode) IR IR (OpenQASM 3.0 files) (.inc files)

QCircuitBench Framework
_~ 1. Problem Description

.
,,// e Carefully hand-crafted prompts.
Ao * Natural language + latex math
B formulas.
ST obiem et non " pree——— * Interfaces of quantum oracle or
(Natural language + Latex math formulas) (Python code) composite gates.

Post-Processing Function Algorithm Circuit uracle/Gate Definition

(Python code) (OpenQASM 3.0 files) (.inc files)

returns the secret string s according to the simulation results.

Ve fes e N \geﬂ%fjijoﬁ Cf)d&! Given a black box function f : {0,1}" — {0,1}". The function is

_ \(QJ:»QS coel2) uaranteed to be a two-to-one mapping according to a secret string s €
(Case test) N2 N g pping 8 &

{0,1}", s # O™, where given z; # z2, f(z1) = f(z2) <= z1 ® z2 = s.
Please design a quantum algorithm to find s. The function is provided as a
black-box oracle gate named “Oracle” in the “oracle.inc” file which operates
as Oy |z) ly) = |z) |y ® f(z)). The input qubits |z) are indexed from 0 to
n — 1, and the output qubits |f(z)) are indexed from n to 2n — 1. Please
provide the following components for the algorithm design with n = 3:
1. the corresponding quantum circuit implementation with QASM. 2. the
post-processing code run__and__analyze(circuit, aer_sim) in python which

simulates the circuit (QuantumCircuit) with aer_sim (AerSimulator) and

QCircuitBench Framework ,* 2. Dataset Creation Script
Create the dataset from scratch:

* Generate primitive QASM circuits.
* Extract gate definitions.
* Validate the data points.
e Dataset Creation : :
9150, DS ———— * Create benchmark pipeline.
(Natural language + Latex math formulas) /51191) SUelS
1 def main():
o 3 3 2 parser = argparse.ArgumentParser ()
Verification Function X B P —
(Case test) . g
5 "——func",
Post-Processing Function Algorithm Circuit Oracle/Gate Definition 6 choices=["gasm", "json", "gate", "check"],
(P‘/illIJOIJ COCJQ) (OpenQASM 3.0 fi|ES) (.inc ﬁ|ES) 7 help="The function to call: generate gasm circuit,
json dataset or extract gate definition.",
g ik
9 args = parser.parse_args()
\ 10 if args.func == "gasm":
\ 11 generate circuit gasm()
\ 12 elif args.func == "json":
\ 13 generate_dataset json()
\ 14 elif args.func == "gate":
\ 15 extract_gate definition()
\ 16 elif args.func == "check":

\‘ 17 check dataset()

QCircuitBench Framework

. 3. Generation Code
/
,7 * Create quantum circuits for

algorithms of different settings
/

(secret strings / qubit numbers).
Problem Description Dataset Creation
+ (Python code)
(Natural language + Latex math formulas) I ——
i e 2 def simon algorithm(n, oracle):
S— : Generation Code . P g S N
Verification Function (QJ:'S:'SI!. SOS]Q) .Creat<.a a iquantum c:chu:!.t Ol:l n qubits
(Case test) O 4 simon circuit = QuantumCircuit(2 * n, n)
‘\\\\\} 5 # Initialize the first register to the |+> state
i " o S . oA 6 simon circuit.h(range(n
Post=Processing Function Algorithm Circuit Oracle/Gate Definition , 4 Ao en S.('g ())1
. ; . , . en e Simon's oracle
(Pythonicode) (OpenQASM 3.0 files) (.inc files) ppena me
8 simon_circuit.append(oracle, range(2 * n))
\\\\\\ 9 # Apply a H-gate to the first register
10 simon circuit.h(range(n))
11 # Measure the first register
12 simon_circuit.measure(range(n), range(n))

13 return simon circuit

QCircuitBench Framework
4. Algorithm Circuit

//' * A .gasm file storing the quantum
/ circuit for each specific setting.
* Adopt OpenQASM 3.0 to explicitly
% save the circuits at gate level.

Generation SQ)JQ include "stdgates.inc";

Verification Function include "oracle.inc";

Problem Description Dataset Creation //
(Natural language + Latex math formulas) (Python code) %
/ OPENQASM 3.8;

(Qiskit'cod”) .
(Case test) s N bit[3] c;
/ \ qubit[6] q;

h e];

Post-Processing Function Algorithm Circuit | Oracle/Gate Definition h :EI}’

(Python code) (OpenQASM 3.0 files) (.inc files) h q[z]f

\\ S / oracle qfel, al1], al2], al3], al4l, als1;

N h q[e];

\\\ h q[1];

~ h q[2];

~

\\ c[@] = measure g[©];
N c[1] = measure g[1];

~a c[2] measure q[2];

QCircuitBench Framework

/

Problem Description Dataset Creation
(Natural language + Latex math formulas) (Python code)
Verification Function
(Case test)

QCircuitBench Dataset

Generation Code,
(@jskit code))

X\

Post-Processing Eunction

(Python code)

<

Algorithm Circuit

(OpenQASM 3.0 files)

N\

Oracle/Gate Definition
(.inc files)

5. Oracle / Gate Definition

t
1 * A .inc file to provide definitions of

I .
, oracles or composite gates.
I

!¢ Delivers the oracle in a black-box way.

I

gate Oracle _gate_qg_©,

_gate _q_ 1,

_gate_g_2,

—gate_g_3,

_gate_q_4,

_gate_qg_5 {
cx _gate_qg_©0, _gate_q_3;
cx _gate_qg_1, _gate_q_4;

\ cx _gate_qg_2, _gate_q_5;
\\ cx _gate_qg_2, _gate_q_5;
\ X _gate_qg_4;

QCircuitBench Framework

Problem Description

(Natural language + Latex math formulas)

Dataset Creation
(Python code)

@ Generat

Post=Processing Function

(Python code)

Algorithm Circuit
(OpenQASM 3.0 files)

Oracle/Gate Definition
(.inc files)

W 0 N o U & W N =

e e e e e e e i
O N U W N H O

6. Post-Processing Function

def

def

For Algorithm Design task only.

Uses Qiskit AerSimulator to execute
the quantum circuit, and returns the

answer to the original problem.

solve equation(string list):

M = Matrix(string_ list).T

M I = Matrix(np.hstack([M, np.eye(M.shape[0], dtype=int)]))
M I rref = M I.rref(iszerofunc=lambda x: x % 2 == 0)

M I final = M I_rref[0].applyfunc(mod2)

if all(value == 0 for value in M_I_ final[-1, : M.shape[l]]):
result_s = "".join(str(c) for ¢ in M_I final[-1, M.shape[l] :])
else:
result_s = "0" * M.shape[0]

return result_s

run_and_analyze(circuit, aer_sim):

n = circuit.num qubits // 2

circ = transpile(circuit, aer_sim)

results = aer_sim.run(circ, shots=n).result()

counts = results.get_counts()

equations = [list(map(int, result)) for result in counts if result != "0" * n]
prediction = solve_equation(equations) if len(equations) > 0 else "0" * n

return prediction

QCircuitBench Framework _« 7. Verification Function
. * Evaluate the implemented algorithm.

7 * The function returns two scores:
= syntax score and semantic score.

7 \
* If the program fails to run

p
il Dataset Creation successfully, a detailed error
i message is provided as feedback.

(Python code)
Verification E . Generation Code.
eritfication Function (QJ\"kJL‘ COC]Q)
(Case test) e
\ def check _model(gasm_string, code_string, n):

Problem Description

(Natural language + Latex math formul=s)

~ 1
2 t =1
PDSf—‘PIS)S&SS]J’Jz Eunction Algorithm Circuit Oracle/Gate Definition 3 with open(f'"test oracle/n{n}/trial{t}/oracle.inc", "r") as file:
(Pythonicode) (OpenQASM 3.0 files) (.inc files) 4 oracle def = file.read()
5 full gasm = plug_in oracle(gasm_string, oracle_def)
\\ 6 circuit = verify gasm syntax(full_ gasm)
7 if circuit is None:
8 return -1
9 try:
S N 10 exec(code_string, globals())
~ 11 aer_sim = AerSimulator()
~ ~ 12 total_ success = 0
N “ 13 total fail = 0
~ 14 t_range = min(10, 4 ** (n - 2))

- 15 shots = 10

Task Suite

+* Oracle Construction

Encode Boolean function f

as an oracle Uf such that

Urlx)z) = |x)z @ f(x)).

qo —@

a1 -

qz 4 4 *—

R+
as)
o
@) -

(a) Simon’s Problem (s=1100)

¢ Quantum Algorithm Design

Covers textbook-level algorithms

to advanced applications.

(b) Deutsch-Jozsa Algorithm

+* Random Circuit Synthesis

Reproduce quantum states
from Clifford set {H, S, CNOT}
/ universal set {H, S, T, CNOT}.

R 1D §

q>

a3

(c) Universal Circuits

Task Suite

Quantum Algorithms

* Textbook-Level Algorithms: Bernstein-Vazirani problem, Deutsch-Jozsa problem,
Simon’s problem, Grover’s algorithm, phase estimation, quantum Fourier transform,
Shor’s algorithm, etc.

* Generalized Simon’s Problem: Intuitively, it extends Simon’s Problem from binary to
p-ary bases and from a single secret string to a subgroup of rank k.

* Quantum Information Protocols: GHZ state preparation, W state preparation, swap
test, qguantum teleportation, superdense coding, quantum key distribution, etc.

* Variational Quantum Algorithms: VQE for ground-state energy estimation, QAOA for

combinatorial optimization, etc.

Contents

QCircuitBench

»* Experimental Results

Benchmark Pipeline

Q n: Consider an unstructured search problem. Given a Answer:[SEP] “gasm
lack box function $f:\{0,1\}*n \rightarrow\{0,1\}$, I OPENQASM 3.0;
o itis known Question: The W State is a quantum superposition with equal ex I incll:Ide "stdgates.inc";
#1\1'ns, $\k{ such that $ states in whi - - - . I qubit[5] g;
H2An}} y\rang PI desi Question: Given a black box function $f: \{0,1\}*n \longmapsto \{0,1\} .
y\rang Please desl| ground state,)) I hq[0];
Answer: ™ qasn d $\ketf\math{ constant (outputs $0S for all inputs or 1 for all inputs) or balanced (out] ex q[0], q1];
OF Question: Given two n-qu AerSimulato for the other half). Please design a quantum algorithm to determine whe I atbl, atil;
prepared from $\ket{0An}$ Answer:'q constant or balanced. The function is provided as a black-box oracle gate | X q[0], af2};
1. the corresponding quanty opENQASM which operates as $SO_f \ket{x}\ket{y} = \ket{x}\ket{y\oplus f(x)}$. The inp | q[0], al3];
(QuantumCircuit) with aer_§ ;| de "std $0S to $n-1S. The output qubit \ket{y} is indexed as qubit n. Please I cx q[0], q[4];
Answer:“‘qasm b' : 3y n P 3y . al J». - P 1 - 1 - . P A
OPENQASM 3.0: qubit| question: The Greenberger-Horne-Zeilinger State (GHZ State) is Please design a I .. th
include "stdgate,s inc™: h q[0] quantum algorithm to prepare the GHZ state. Please provide the following I python . . .
include "oracle in.c"' ’ cx q[d components for the algorithm design with $n = 55: 1. the corresponding quantum def run_and_analyze(circuit, aer_sim):
bit[1] c; ’ cx q[(circuit implementation with QASM. 2. the post-processing code | """Return the qubit indices of the prepared GHZ
. £a run_and_analyze(circuit, aer_sim) in python which returns the qubit indices of the I state.""
prepared state as a list, where circuit (QuantumCircuit) is the implemented circy#and . R .
aer sim is an AerSimulator. | Nreturn list(range(circuit.num_qubits))
Answer:[SEP] |
S

Problem /
Description

FEWESHOT:

Question : Problem

Description
Answer : QASM /

ython (if necessary)

Description:
Answer:IQASIVIY

Questions Problem

Python (iffnecessary))

Q: Problem
Description

A: QASM / Python (if
necessary)

Question : Problem
Description

Answer. : QASM | /
Python (if necessary)

Question : Problem
Description

Answer. : QASM /
Python (if necessary)

@ Problem
Description|
A: [SEP]

I
[} Algorithm Circuit
: (Open@ASIVI 3:0ifiles)
I

Oracle Circuit
(OpenQASM 3.0 files)

Post-Processing
Function
(Python code)

(OraCIENCONSIUICH ON

I Algonthmibesigh|

BLEU Score

Measures similarity
between model-
generated output

and reference code.

Algorithm Design

BV et
D) (R EE——
Grover
PE =,
QFT % -
Simon [E—
GHZ State e — -
RNG e e——— .
Swap Test [
W State | ——
Multi-Str s,
Ternary s
’ Models
t-40-2024-05-13
Shor 58 —_— (glp-shot)
t-40-2024-05-13
VQE {25 . m— ew-shot)
Meta-Llama-3-8B
QAOA = (1-shot)
| Meta-Llama-3-8B
QAE — (few-shot)
=] Qwen2.5-7B
S (1-shot)
— Qwen2.5-7B
ENC = " (few-shot)
DeepSeek-R1
Average IS (1-shot)
! DeepSeek-R1
(few-shot)
0 2’0 8‘0 1(')0

Figure 3: Benchmarking algorithm design and oracle construction tasks in BLEU scores.

4'0 GIO
BLEU Score

Oracle Construction + Random Circuits

BV +
-
DJ =
-
Diffusion i
—
Grover . =
Simon 7
i —
Multi-Str =
: L |
Ternary
Models
gpt-40-2024-05-13
W (1-shot)
. — gpt-40-2024-05-13
Clifford " (5-shot)
 — o Meta-Llama-3-88
W (1-shot)
Meta-Llama-3-8B
- B (5-shot)
Random = Qwen2.5
— | (1-shot)
Qwen2.5
— (5-shot)
DeepSeek
Average m— CCOP%
! DeepSeek
(5-shot)
10 20 30 60 70 80

40 50
BLEU Score

Verification Score

Table 1: QASM syntax score for benchmarking quantum algorithm design.

Bernstein | Deutsch Phase . Random Swap w Gens:ralized Gengralized
Model Shot Vazirani Jozsa Grover Estimation QFT Simon GHZ Gl\iumber Test State Slm.on Simon Shor VQE QAOA QAE ENC Avg
nerator (multi-str) (ternary)
GPT-40 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2308 1.0000 0.8333 0.5833 02734
(£0.0000) | (£0.0000) | (+0.0000) | (£0.0000) | (£0.0000) | (x£0.0000) || (x£0.0000) | (£0.0000) | (+0.0000) | (£0.0000) (2£0.0000) (2£0.0000) (£0.0000) || (2£0.0843) | (£0.0000) | (£0.0904) | (+0.1486) :
GPT-4 5 1.0000 1.0000 0.0000 0.6154 0.5385 0.9231 0.5714 1.0000 1.0000 0.4444 0.0769 0.1111 0.0000 0.2308 0.7222 1.0000 0.5833 05775
-0 (2£0.0000) | (£0.0000) | (£0.0000) | (*0.1404) | (£0.1439) | (£0.0769) || (£0.2020) | (*0.0000) | (+0.0000) | (x0.1757) (x0.0769) (x0.1111) (2£0.0000) || (+0.0843) | (£0.1086) | (+0.0000) | (+0.1486) :
Llama3 | 0.1538 0.2308 0.3077 0.4615 0.0000 0.1538 0.1429 0.4615 0.1429 0.3333 0.5385 0.4444 0.0000 0.2574 0.1667 0.0000 0.3438 0.2435
(£0.1042) | (£0.1216) | (£0.1332) | (0.1439) | (£0.0000) | (£0.1042) || (£0.1429) | (*0.1439) | (%0.0971) | (x0.1667) (2£0.1439) (£0.1757) (£0.0000) || (£0.0285) | (£0.0544) | (£0.0000) | (+0.0853) :
Llama3 5 0.5385 0.3846 0.6154 0.5385 0.3846 0.1538 0.2857 0.9231 0.5000 0.3333 0.8462 0.3333 0.0000 0.2363 0.9375 0.0000 0.8125 0.4602
(2£0.1439) | (£0.1404) | (£0.1404) | (£0.1439) | (£0.1404) | (£0.1042) || (£0.1844) | (*0.0769) | (£0.1387) | (x0.1667) (£0.1042) (£0.1667) (£0.0000) || (£0.0277) | (£0.0353) | (+0.0000) | (+0.0701) :
Qwen] 0.0769 0.1538 0.0000 0.0769 0.0769 0.3077 0.4286 0.2308 0.2857 0.2222 0.5385 0.1111 0.0000 0.4515 0.8750 0.0000 1.0000 0.2844
25 (£0.0769) | (£0.1042) | (£0.0000) | (£0.0769) | (£0.0769) | (2£0.1332) || (x£0.2020) | (£0.1216) | (£0.1253) | (x£0.1470) (2£0.1439) (£0.1111) (£0.0000) || (£0.0324) | (£0.0482) | (+0.0000) | (+0.0000) :
Qwen 5 0.3077 0.6154 0.1538 0.3077 0.2308 0.1538 0.4286 0.6154 0.5714 0.2222 0.4615 0.2222 0.0000 0.3544 0.9583 1.0000 0.7188 04307
25 (2£0.1332) | (£0.1404) | (£0.1042) | (£0.1332) | (£0.1216) | (£0.1042) || (£0.2020) | (*0.1404) | (£0.1373) | (x0.1470) (2£0.1439) (2£0.1470) (£0.0000) || (£0.0311) | (£0.0291) | (+0.0000) | (+0.0808) :
DeepSeek- 1 0.0000 0.0769 0.0000 0.0000 0.0000 0.0000 0.1429 0.0769 0.0714 0.0000 0.1538 0.0000 0.0000 0.07173 0.2292 0.0000 0.1563 0.0576
R1 (2£0.0000) | (£0.0769) | (£0.0000) | (£0.0000) | (£0.0000) | (+0.0000) || (£0.1429) | (*0.0769) | (£0.0714) | (x0.0000) (x0.1042) (x0.0000) (£0.0000) || (£0.0168) | (x0.0613) | (+0.0000) | (+0.0652) :
DeepSeek- 5 0.3846 0.0769 0.0000 0.0769 0.0769 0.0000 0.0000 0.1538 0.1429 0.0000 0.2308 0.0000 0.0000 0.0084 0.4167 1.0000 0.4375 0.1768
R1 (£0.1404) | (£0.0769) | (+0.0000) | (£0.0769) | (£0.0769) | (x£0.0000) || (x£0.0000) | (£0.1042) | (+0.0971) | (£0.0000) (2£0.1216) (2£0.0000) (£0.0000) || (£0.0060) | (x0.0719) | (£0.0000) | (+0.0891) :
Human - 0.5000 1.0000 0.0000 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 1.0000 1.0000 0.0000 0.5000 1.0000 1.0000 1.0000 0.6667 0.6862

QASM Syntax Check
Is the QASM code syntactically valid?

Python Syntax Check

Is the post-processing script valid?

Semantic Accuracy

Does simulation output match the expected result?

Observations

Few-shot > One-shot in most cases (e.g., Owen 2.5 improves by 0.2854 on Deutsch-Jozsa).

Best Performers: GPT-40 excels at in-context learning and long-code understanding.

Harder tasks (O/'7, Shor's aleorithm) remain challenging even for GPT-40 w. few-shot.

VQE and QAOA are especially difficult due to hybrid classical-quantum structure (e.g.

DeepSeek-R1 achieves all zero scores on semantic score of VOE and QAOA).

BLEU vs. Verification sometimes diverge (e.o., hich BLEU but poor semantic in GHZ state).

Open-book setting shows unguided retrieval may introduce noise or distract from task-

specific structure.

Error Types

Improvisation Error

* GPT-40 uses unsupported QASM 3.0 features (e.g., custom namespaces), causing failures.

* Better adherence in few-shot settings.

3.0;
"stdgates.inc";
"oracle.inc";

3.0;

"stdgates.inc";

1 in[l:6] {
cx gq[i-1], qlil;

GP1-40 uses the “for” loop syntax in OpenQASM 3.0. GP1T-40 assigns novel names to the qubit registers,
Qiskit.qasm3 import module does not support this leading to a conflict in the symbol table. Substitution
advanced feature, resulting failure in syntax validation. with new names delivers the correct solution.

Error Types

Counting Error

* GPT-40 fails to identify ‘1’ bits in the secret string (c.o., for Bernstein-Vazirani).

* Suggests difficulty in binary indexing and tokenization.

GPT40’s answer for counting indices

In the secret string s="000101", the bits that equal 1 are found at the following indices (0-based):
Index 2

Index 5

These indices correspond to the positions where the string has a ’1°.

3.0;
"stdgates.inc";

Oracle _gate_qg 0, _gate_g 1, _gate_qg 2, _gate_qg 3, _gate_qg 4, _gate_qg 5, _gate_g 6 {

cx _gate_q 2, _gate_qg 6;
cx _gate_qg 5, _gate_qg 6;

}

Error Types

Data Contamination

* LLMs recall Qiskit tutorials well but struggle with gate-level QASM synthesis from scratch.
e QCircuitBench helps mitigate this with fresh, custom-built QASM data.

Text Answer by GPT40

Here’s a Python code using Qiskit to implement the Bernstein-Vazirani algorithm with n = 5 qubits. The secret
string used in this example is s = 10101 (you can change this to any string of your choice).

h g[2];

bv_circuit = QuantumCircuit (n+1l, n) Eq{z%,
a 7

bv_circuit. x q[5‘]‘;
h q[5];

bv_circuit. D Ora

bv_circuit. cx ql[0], ql5];

cx gl[2], ql5]1;
cx q[31, ql51;

i, bit ‘

bit == 71’ :

bv_circuit.cx (i, n)

h g[0];
h q[l];

t APP el h g[2];
bv_circuit.h((n)) h gl[3];

Fine-tuning Results

* LoRA-based fine-tuning on LLaMA3-8B (8-bit quantized).
* Improves scores, especially better at counting ‘1’ bits (Bernstein-Vazirani).

* Scores drop on random circuits, indicating challenge of encoding quantum state vectors
within a language model and overfitting on tasks with high output diversity.

Table 2: Fine-tuning oracle construction scores.

Score Model Setting Bernstein-Vazirani | Deutsch-Jozsa | Grover Simon Clifford | Universal Avg
o PR 95.6388 91,0564 920620 | 80.3390 | 39.5469 | 333673 | =
&p (£0.3062) (#0.6650) | (20.6288) | (22.0900) | (23.6983) | (+3.1007) '
53.5574 69.8996 613102 | 263083 | 13.0729 | 134185
BLEU Llama3 few-shot(5) (£5.2499) (+57812) | (£5.4671) | (22.0048) | (£0.9907) | (21.2209) | 39:5945
76.0480 71,8378 677892 | 43.8460 | 10.8978 | 7.1854
Llama3 finetune (£7.9255) (+2.4179) | (27.8900) | (23.2998) | (+0.6169) | (+0.5009) | #6-2675
o PR 0.0000 0.4300 0.0000 | -0.0200 | -0.0333 | -0.1023 00457
gp W (+0.0246) (0.0590) | (20.1005) | (20.0141) | (20.0401) | (+0.0443) :
L 20.2700 0.0900 205200 | -0.6600 | -0.7303 | -0.5056
Verification | - Llama3 few-shot(5) (+0.0468) (+0.0668) | (£0.0858) | (20.0476) | (+0.0473) | (20.0549) | -0:4327
Ll . -0.1300 -0.2000 203300 | -0.7400 | -0.8741 | -0.9342 05347
ama netune (+0.0485) (+0.0402) (£0.0900) | (£0.0441) | (£0.0343) | (x0.0262) |
1.1967 1174 11527 | 11119 | 1448 | 14975
oo Llama3 few-shot(5) (+0.0028) (£0.0015) | (£0.0021) | (20.0017) | (£0.0054) | (20.0051) | 1:2541
1.0004 1.1090 10010 | 11072 | 12944 | 1.3299
Llama3 finetune (+0.0002) (+0.0014) | (£0.0006) | (£0.0011) | (20.0053) | (20.0055) | 11403

Contents

QCircuitBench

** Discussion & Conclusion

Takeaways

** Novelty

* First large-scale benchmark for LLM-driven quantum algorithm design.

+*»* Dataset Design
* A perspective from code generation.
* Modular and extensible structure.

 Automatic verification functions.

** Experiments
e QCircuitBench poses significant challenges to SOTA LLMs.

* Fine-tuning experiments demonstrate early promise.

Open Challenges

+¢* Data Bottleneck

* Few existing quantum algorithms = limited dataset diversity

How can we construct large-scale, high-quality datasets for LLMs in quantum algorithm design?

¢ Fine-tuning for Design
* Move from benchmarking to enabling new quantum algorithm synthesis

Which fine-tuning methods are best for quantum data? What metrics best reflect model capability?

¢ Evaluation Bottlenecks
* Classical simulation of quantum circuits is computationally expensive

How to develop efficient, scalable automatic evaluation suitable for long/deep circuits?

Thanks!

