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Trends in AI applications: AI for Science

AlphaFold

Predicting the 3D 
structure of proteins 
based on amino acid 
sequence.

2024 Nobel Prize 
in Chemistry.



Trends in AI applications: AI for Science

AlphaProof

Achieved a silver medal in the IMO competition.



Trends in AI applications: AI for Science LLM for Math



Trends in AI applications:

AI for Science AI for Quantum Computing

Quadratic to superpolynomial
speedup

Challenging to design manually

Dataset for quantum computing is solicited!



QCircuitBench

Contributions

• Task Formulation: a carefully designed framework capturing the core aspects of 

quantum algorithm design.
• Rich Algorithm Coverage: covers 3 task suites, 25 algorithms, and 120,290 data points, 

supporting complex, scalable algorithm implementation.
• Automatic Verification: built-in validation tools, enabling human-free, iterative 

evaluation and interactive reasoning.
• Training Potential: demonstrates promise as a training dataset via preliminary fine-

tuning experiments.

First large-scale benchmark for AI-driven quantum algorithm design
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Formulation: Natural Language? verbose, ambiguous (✘)
Math formulas? precise, but hard to verify automatically (✘)

Oracle Paradox: Theoretically: black-box. 
Experimentally: explicit construction with quantum gates.

Classical Procedure: Quantum Algorithm = Quantum Circuit + 
Interpretation of Measurement Results.

What challenges do we need to tackle?

Challenges



Design Principles

Challenges Solutions

A Separate oracle.inc library 

Require post-processing functions

Preserve black-box abstraction while enabling 
compilation in OpenQASM.

Include number of shots to characterize 
query complexity.

Formulation: Natural Language? (✘) 
Math formulas? (✘)

Oracle Paradox: Theoretically: black-box. 
Experimentally: explicit gates.

Classical Procedure: Quantum Algorithm 
= Quantum Circuit + Interpretation of 
Measurement Results. 

A code generation perspective
Represent quantum algorithms with quantum 

programming languages.



QCircuitBench Framework

A general framework which formulates the key features of quantum algorithm design
task for Large Language Models.



QCircuitBench Framework
1. Problem Description
• Carefully hand-crafted prompts. 
• Natural language + latex math 

formulas. 
• Interfaces of quantum oracle or 

composite gates.



QCircuitBench Framework 2. Dataset Creation Script
Create the dataset from scratch: 
• Generate primitive QASM circuits. 
• Extract gate definitions.
• Validate the data points.
• Create benchmark pipeline.



QCircuitBench Framework
3. Generation Code
• Create quantum circuits for 

algorithms of different settings 
(secret strings / qubit numbers).



QCircuitBench Framework
4. Algorithm Circuit
• A .qasm file storing the quantum 

circuit for each specific setting.
• Adopt OpenQASM 3.0 to explicitly 

save the circuits at gate level.



QCircuitBench Framework
5. Oracle / Gate Definition
• A .inc file to provide definitions of 

oracles or composite gates. 

• Delivers the oracle in a black-box way.



QCircuitBench Framework
6. Post-Processing Function
• For Algorithm Design task only. 

• Uses Qiskit AerSimulator to execute 
the quantum circuit, and returns the 
answer to the original problem. 



QCircuitBench Framework 7. Verification Function
• Evaluate the implemented algorithm. 

• The function returns two scores: 
syntax score and semantic score.

• If the program fails to run 
successfully, a detailed error 
message is provided as feedback.



Task Suite

v Oracle Construction

Encode Boolean function 𝑓
as an oracle 𝑈! such that 

𝑈! 𝑥 𝑧 = 𝑥 𝑧 ⊕ 𝑓 𝑥 .

v Quantum Algorithm Design

Covers textbook-level algorithms 
to advanced applications.

v Random Circuit Synthesis

Reproduce quantum states 
from Clifford set {H, S, CNOT} 

/ universal set {H, S, T, CNOT}.

(a) Simon’s Problem (s=1100) (b) Deutsch-Jozsa Algorithm (c) Universal Circuits



Task Suite

Quantum Algorithms

• Textbook-Level Algorithms: Bernstein-Vazirani problem, Deutsch-Jozsa problem, 
Simon’s problem, Grover’s algorithm, phase estimation, quantum Fourier transform, 

Shor’s algorithm, etc.
• Generalized Simon’s Problem: Intuitively, it extends Simon’s Problem from binary to 

p-ary bases and from a single secret string to a subgroup of rank k.
• Quantum Information Protocols: GHZ state preparation, W state preparation, swap 

test, quantum teleportation, superdense coding, quantum key distribution, etc.

• Variational Quantum Algorithms: VQE for ground-state energy estimation, QAOA for 
combinatorial optimization, etc.
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Verification

Algorithm Circuit
(OpenQASM 3.0 files)

Post-Processing 
Function

 (Python code)

Oracle Circuit
(OpenQASM 3.0 files)

Algorithm Design Oracle Construction

Problem 
Description

Question : Problem 
Description
Answer : QASM / 
Python (if necessary)

Algorithm / 
Oracle Circuit 

Few-shot

Question : Problem 
Description
Answer : QASM / 
Python (if necessary)
Question : Problem 
Description
Answer : QASM / 
Python (if necessary)

Question : Problem 
Description
Answer : QASM / 
Python (if necessary)

Q: Problem 
Description
A: QASM / Python (if 
necessary)

Post-Processing 
(if necessary)

QCircuitBench    
Dataset

Q: Problem 
Description
A: [SEP]

Benchmark Pipeline



BLEU Score

• Measures similarity 

between model-
generated output 
and reference code.  



Verification Score

QASM Syntax Check
Is the QASM code syntactically valid?

Python Syntax Check
Is the post-processing script valid?

Semantic Accuracy
Does simulation output match the expected result?



Observations

• Few-shot > One-shot in most cases (e.g., Qwen 2.5 improves by 0.2854 on Deutsch-Jozsa).

• Best Performers: GPT-4o excels at in-context learning and long-code understanding.

• Harder tasks (QFT, Shor’s algorithm) remain challenging even for GPT-4o w. few-shot.

• VQE and QAOA are especially difficult due to hybrid classical-quantum structure (e.g. 

DeepSeek-R1 achieves all zero scores on semantic score of VQE and QAOA).

• BLEU vs. Verification sometimes diverge (e.g., high BLEU but poor semantic in GHZ state).

• Open-book setting shows unguided retrieval may introduce noise or distract from task-
specific structure.



Error Types

GPT-4o uses the “for” loop syntax in OpenQASM 3.0. 
Qiskit.qasm3 import module does not support this 
advanced feature, resulting failure in syntax validation.

GPT-4o assigns novel names to the qubit registers, 
leading to a conflict in the symbol table. Substitution 
with new names delivers the correct solution.

Improvisation Error

• GPT-4o uses unsupported QASM 3.0 features (e.g., custom namespaces), causing failures.
• Better adherence in few-shot settings.



Error Types

Counting Error

• GPT-4o fails to identify ‘1’ bits in the secret string (e.g., for Bernstein-Vazirani).
• Suggests difficulty in binary indexing and tokenization.



Error Types

Data Contamination

• LLMs recall Qiskit tutorials well but struggle with gate-level QASM synthesis from scratch.
• QCircuitBench helps mitigate this with fresh, custom-built QASM data.



Fine-tuning Results

• LoRA-based fine-tuning on LLaMA3-8B (8-bit quantized).
• Improves scores, especially better at counting ‘1’ bits (Bernstein-Vazirani).

• Scores drop on random circuits, indicating challenge of encoding quantum state vectors 
within a language model and overfitting on tasks with high output diversity.
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Takeaways

v Novelty
• First large-scale benchmark for LLM-driven quantum algorithm design.

v Dataset Design
• A perspective from code generation.

• Modular and extensible structure.
• Automatic verification functions.

v Experiments
• QCircuitBench poses significant challenges to SOTA LLMs.

• Fine-tuning experiments demonstrate early promise.



Open Challenges

v Data Bottleneck
• Few existing quantum algorithms → limited dataset diversity

v Fine-tuning for Design

• Move from benchmarking to enabling new quantum algorithm synthesis

v Evaluation Bottlenecks
• Classical simulation of quantum circuits is computationally expensive

How can we construct large-scale, high-quality datasets for LLMs in quantum algorithm design?

Which fine-tuning methods are best for quantum data? What metrics best reflect model capability?

How to develop efficient, scalable automatic evaluation suitable for long/deep circuits?



Thanks!


