
Rui Yang

QCircuitBench: A Large-Scale Dataset for
Benchmarking Quantum Algorithm Design

International Workshop on Quantum Boltzmann Machines (IW-QBM)
December 10, 2025

Ziruo Wang Yuntian Gu Yitao Liang Tongyang Li

Peking University
Accepted by NeurIPS 2025

Contents

v Introduction & Preliminaries

v Dataset Framework

v Experimental Results

v Discussion & Conclusion

QCircuitBench

Contents

v Introduction & Preliminaries

v Dataset Framework

v Experimental Results

v Discussion & Conclusion

QCircuitBench

Trends in AI applications: AI for Science

AlphaFold

Predicting the 3D
structure of proteins
based on amino acid
sequence.

2024 Nobel Prize
in Chemistry.

Trends in AI applications: AI for Science

AlphaProof

Achieved a silver medal in the IMO competition.

Trends in AI applications: AI for Science LLM for Math

Trends in AI applications:

AI for Science AI for Quantum Computing

Quadratic to superpolynomial
speedup

Challenging to design manually

Dataset for quantum computing is solicited!

QCircuitBench

Contributions

• Task Formulation: a carefully designed framework capturing the core aspects of

quantum algorithm design.
• Rich Algorithm Coverage: covers 3 task suites, 25 algorithms, and 120,290 data points,

supporting complex, scalable algorithm implementation.
• Automatic Verification: built-in validation tools, enabling human-free, iterative

evaluation and interactive reasoning.
• Training Potential: demonstrates promise as a training dataset via preliminary fine-

tuning experiments.

First large-scale benchmark for AI-driven quantum algorithm design

Contents

v Introduction & Preliminaries

v Dataset Framework

v Experimental Results

v Discussion & Conclusion

QCircuitBench

Formulation: Natural Language? verbose, ambiguous (✘)
Math formulas? precise, but hard to verify automatically (✘)

Oracle Paradox: Theoretically: black-box.
Experimentally: explicit construction with quantum gates.

Classical Procedure: Quantum Algorithm = Quantum Circuit +
Interpretation of Measurement Results.

What challenges do we need to tackle?

Challenges

Design Principles

Challenges Solutions

A Separate oracle.inc library

Require post-processing functions

Preserve black-box abstraction while enabling
compilation in OpenQASM.

Include number of shots to characterize
query complexity.

Formulation: Natural Language? (✘)
Math formulas? (✘)

Oracle Paradox: Theoretically: black-box.
Experimentally: explicit gates.

Classical Procedure: Quantum Algorithm
= Quantum Circuit + Interpretation of
Measurement Results.

A code generation perspective
Represent quantum algorithms with quantum

programming languages.

QCircuitBench Framework

A general framework which formulates the key features of quantum algorithm design
task for Large Language Models.

QCircuitBench Framework
1. Problem Description
• Carefully hand-crafted prompts.
• Natural language + latex math

formulas.
• Interfaces of quantum oracle or

composite gates.

QCircuitBench Framework 2. Dataset Creation Script
Create the dataset from scratch:
• Generate primitive QASM circuits.
• Extract gate definitions.
• Validate the data points.
• Create benchmark pipeline.

QCircuitBench Framework
3. Generation Code
• Create quantum circuits for

algorithms of different settings
(secret strings / qubit numbers).

QCircuitBench Framework
4. Algorithm Circuit
• A .qasm file storing the quantum

circuit for each specific setting.
• Adopt OpenQASM 3.0 to explicitly

save the circuits at gate level.

QCircuitBench Framework
5. Oracle / Gate Definition
• A .inc file to provide definitions of

oracles or composite gates.

• Delivers the oracle in a black-box way.

QCircuitBench Framework
6. Post-Processing Function
• For Algorithm Design task only.

• Uses Qiskit AerSimulator to execute
the quantum circuit, and returns the
answer to the original problem.

QCircuitBench Framework 7. Verification Function
• Evaluate the implemented algorithm.

• The function returns two scores:
syntax score and semantic score.

• If the program fails to run
successfully, a detailed error
message is provided as feedback.

Task Suite

v Oracle Construction

Encode Boolean function 𝑓
as an oracle 𝑈! such that

𝑈! 𝑥 𝑧 = 𝑥 𝑧 ⊕ 𝑓 𝑥 .

v Quantum Algorithm Design

Covers textbook-level algorithms
to advanced applications.

v Random Circuit Synthesis

Reproduce quantum states
from Clifford set {H, S, CNOT}

/ universal set {H, S, T, CNOT}.

(a) Simon’s Problem (s=1100) (b) Deutsch-Jozsa Algorithm (c) Universal Circuits

Task Suite

Quantum Algorithms

• Textbook-Level Algorithms: Bernstein-Vazirani problem, Deutsch-Jozsa problem,
Simon’s problem, Grover’s algorithm, phase estimation, quantum Fourier transform,

Shor’s algorithm, etc.
• Generalized Simon’s Problem: Intuitively, it extends Simon’s Problem from binary to

p-ary bases and from a single secret string to a subgroup of rank k.
• Quantum Information Protocols: GHZ state preparation, W state preparation, swap

test, quantum teleportation, superdense coding, quantum key distribution, etc.

• Variational Quantum Algorithms: VQE for ground-state energy estimation, QAOA for
combinatorial optimization, etc.

Contents

v Introduction & Preliminaries

v Dataset Framework

v Experimental Results

v Discussion & Conclusion

QCircuitBench

Verification

Algorithm Circuit
(OpenQASM 3.0 files)

Post-Processing
Function

 (Python code)

Oracle Circuit
(OpenQASM 3.0 files)

Algorithm Design Oracle Construction

Problem
Description

Question : Problem
Description
Answer : QASM /
Python (if necessary)

Algorithm /
Oracle Circuit

Few-shot

Question : Problem
Description
Answer : QASM /
Python (if necessary)
Question : Problem
Description
Answer : QASM /
Python (if necessary)

Question : Problem
Description
Answer : QASM /
Python (if necessary)

Q: Problem
Description
A: QASM / Python (if
necessary)

Post-Processing
(if necessary)

QCircuitBench
Dataset

Q: Problem
Description
A: [SEP]

Benchmark Pipeline

BLEU Score

• Measures similarity

between model-
generated output
and reference code.

Verification Score

QASM Syntax Check
Is the QASM code syntactically valid?

Python Syntax Check
Is the post-processing script valid?

Semantic Accuracy
Does simulation output match the expected result?

Observations

• Few-shot > One-shot in most cases (e.g., Qwen 2.5 improves by 0.2854 on Deutsch-Jozsa).

• Best Performers: GPT-4o excels at in-context learning and long-code understanding.

• Harder tasks (QFT, Shor’s algorithm) remain challenging even for GPT-4o w. few-shot.

• VQE and QAOA are especially difficult due to hybrid classical-quantum structure (e.g.

DeepSeek-R1 achieves all zero scores on semantic score of VQE and QAOA).

• BLEU vs. Verification sometimes diverge (e.g., high BLEU but poor semantic in GHZ state).

• Open-book setting shows unguided retrieval may introduce noise or distract from task-
specific structure.

Error Types

GPT-4o uses the “for” loop syntax in OpenQASM 3.0.
Qiskit.qasm3 import module does not support this
advanced feature, resulting failure in syntax validation.

GPT-4o assigns novel names to the qubit registers,
leading to a conflict in the symbol table. Substitution
with new names delivers the correct solution.

Improvisation Error

• GPT-4o uses unsupported QASM 3.0 features (e.g., custom namespaces), causing failures.
• Better adherence in few-shot settings.

Error Types

Counting Error

• GPT-4o fails to identify ‘1’ bits in the secret string (e.g., for Bernstein-Vazirani).
• Suggests difficulty in binary indexing and tokenization.

Error Types

Data Contamination

• LLMs recall Qiskit tutorials well but struggle with gate-level QASM synthesis from scratch.
• QCircuitBench helps mitigate this with fresh, custom-built QASM data.

Fine-tuning Results

• LoRA-based fine-tuning on LLaMA3-8B (8-bit quantized).
• Improves scores, especially better at counting ‘1’ bits (Bernstein-Vazirani).

• Scores drop on random circuits, indicating challenge of encoding quantum state vectors
within a language model and overfitting on tasks with high output diversity.

Contents

v Introduction & Preliminaries

v Dataset Framework

v Experimental Results

v Discussion & Conclusion

QCircuitBench

Takeaways

v Novelty
• First large-scale benchmark for LLM-driven quantum algorithm design.

v Dataset Design
• A perspective from code generation.

• Modular and extensible structure.
• Automatic verification functions.

v Experiments
• QCircuitBench poses significant challenges to SOTA LLMs.

• Fine-tuning experiments demonstrate early promise.

Open Challenges

v Data Bottleneck
• Few existing quantum algorithms → limited dataset diversity

v Fine-tuning for Design

• Move from benchmarking to enabling new quantum algorithm synthesis

v Evaluation Bottlenecks
• Classical simulation of quantum circuits is computationally expensive

How can we construct large-scale, high-quality datasets for LLMs in quantum algorithm design?

Which fine-tuning methods are best for quantum data? What metrics best reflect model capability?

How to develop efficient, scalable automatic evaluation suitable for long/deep circuits?

Thanks!

