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One-page summary

Classical learning surrogates

Train Q; Deploy Q

QNNs

Train C; Deploy Q

Train Q; Deploy CTrain C; Deploy C

Classical learning

surrogate
[Provable Efficiency]

[Joseph Bowles]

No advantages

arXiv:2507.1747
(noisy scenario;

20-qubit SC QC)

arXiv:2509.04923
(survey;

classical AI for Q)

. arXiv:2511.07092
(noisy scenario;

100-qubit ZNE)

Min-Hsiu Hsieh Dacheng Tao



Motivations & Backgrounds
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How to understand quantum computers at scale?
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• What are large-scale quantum computers?

Motivations & Backgrounds

2017

IBM-Q

6 qubits

2019

Quantum supremacy

53 qubits

Images from nature, 549(7671), 242-246; Nature 574.7779 (2019): 505-510; Nature 626.7997 (2024): 58-65; https://www.nature.com/articles/d41586-023-03854-1

2024

Reconfigurable atom arrays

256 qubits

2023

IBM Condor

1121 qubits

2025

Google

(101 qubits)

Pasqal

(1000 atoms)

Era of large-scale quantum computing
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Motivations & Backgrounds

Classical simulators

(State-vector, Tensor-network; (near)-

Clifford, …)

State space

(>50 qubits)

Efficient for more states;

Few quantum resources

Challenges in Understanding Large-qubit Quantum Circuits:

Conventional approaches become expensive or incapable!

Time

Memory

Tomography-based approaches

(State, process, shadow, …)
Scarcity
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Question: Is there any efficient classical ML model that can well predict the linear

properties (mean values) of large-qubit quantum circuits?
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Question: Is there any efficient classical ML model … large-qubit quantum circuits?

Yes, it is classical learning surrogate (or agent, emulator, learner …)
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Focus: The explored quantum circuits are formed by RZ + Clifford gates (universality)

Quantum circuit: Arbitrary N-qubit input states, RZ + Clifford gates, incoherent measurements

Efficient classical learner: Computational complexity of training and inference polynomially scales with N and d

Problem Setup
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Efficient classical learning surrogates have many crucial implications

Enrich quantum learning theory

State learning t-doped Clifford circuits Ground states propertiesGraph states

Quantum Learner (Train Q; Deploy Q)

Dynamics of bounded-gate circuit Dynamics of quantum circuit

Classical Learner (Train Q; Deploy C)
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Deliver practical applications

Quantum certification Quantum shadow estimation

Images from Nature Reviews Physics 4.2 (2022): 81-81. https://medium.com/qiskit/a-tale-of-colliding-electrons-boosting-the-accuracy-of-chemical-simulations-on-quantum-computers-50a4b4ee5c64; Nature volume 549, pages242–246 (2017

Quantum simulation

VQAs

• Fidelity

• Purity

• Entropy

• …

Deliver practical applications (resource reduction)

Efficient classical learning surrogates have many crucial implications
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Main Theoretical Results
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For an N-qubit parametrized quantum circuit, the concept class (d RZ gates and G-d Clifford gates) is
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Problem Setup: State Space

Central Aim: Complexity of classical learning surrogates to achieve 𝜖-prediction error:

with 𝑈 𝒙 = ς𝑙=1
𝑑 RZ 𝒙𝑙 𝑢𝑒 ∈ 𝑈(2𝑁) and 𝜌 𝒙 = 𝑈 𝒙 𝜌0𝑈 𝒙 ⊤



Central Aim: Complexity of classical learning surrogates to achieve 𝜖-prediction error:
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Problem Setup: State Space

Three subaims

1. What is the learnability of ℱ in terms of the sample complexity?

2. What is the learnability of ℱ in terms of the computational complexity?

3. How to design a detailed algorithm to match the above bounds?



A brief summary: Θ(𝑑/𝜖) training examples are sufficient and necessary to learn ℱ

Lower bound
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Results for Sub-Aim 1 (sample complexity, Theorem 1)

n ∼ ෩Ω 𝑑 is necessary

Technical tools

Upper bound

n ∼ ෩O 𝑑 is sufficient

Covering / Packing net

Hypothesis testing

Fano inequality



A brief summary: there exists a class of circuits ℱ that need an exponentially computational complexity to learn it.
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Results for Sub-Aim 2 (computational complexity)

[MGD2024, arXiv: 2405.02027v2] Limitations from complexity theory

No alg that can solely use the collected measure-out data to learn 𝑓(𝒙⊥)

in a polynomial time

BQP ⊊ P/Poly



Sample efficient & May not computationally efficient

But …
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Question: Under some practical conditions, is there any efficient classical ML

model that can well predict the linear properties of large-qubit quantum circuits?



Here we devise an efficient classical learning surrogate to learn mean values for arbitrary observables.
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Results for Sub-Aim 3 (algorithmic implementation)

(I. Data collection, interaction with Q)

𝒙 𝑖 , ෤𝜌𝑇 𝒙 𝑖
𝑖=1

𝑛

T Pauli-based snapshots

(II. Build kernel, No Q) (III. Prediction, No Q)



The proposed kernel-based classical learning surrogate yields

: a truncated trigonometric monomial kernel with

Φ𝝎(𝒙) with 𝝎 ∈ 0,1, −1 𝑑 is the trigonometric monomial basis
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Results for Sub-Aim 3 (algorithmic implementation)

: shadow estimation

𝜌 𝒙 = ෍

𝝎

Φ𝝎 𝒙 𝜌𝝎 by Pauli Transfer Matrix

(Smoothness) 𝔼𝒙∼ −𝜋,𝜋 𝑑 ∇𝒙 Tr(𝜌 𝒙 𝑂)
2

≤ 𝐶.



The proof idea is separately bounding the estimation and truncation error:
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Results for Sub-Aim 3 (proof sketch)

Truncation error

(Smoothness) 𝔼𝒙∼ −𝜋,𝜋 𝑑 ∇𝒙 Tr(𝜌 𝒙 𝑂)
2

≤ 𝐶.

Estimation error

(Pauli-based Shadow error)

𝑛 ≥ ෨𝑂 ℭ
4C

𝜖
2𝐵29𝐾𝜖−1Sample and runtime efficient
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Results for Sub-Aim 3 (theoretical guarantee, Theorem 2)

Generalize to d Rot-Pauli + Clifford + T gates

𝔼𝒙∼ −𝜋,𝜋 𝑑, shadow[ ෝ𝜎 𝑛 𝒙 ] = 𝜌Λ(𝒙).

𝑛 ≥ ෨𝑂 ℭ
4C

𝜖
2𝐵29𝐾𝜖−1

When 𝑈 𝒙 is compose of RZ, H, T gates, CNOT, etc Beyond near-Clifford simulators; sparse Pauli dynamics

Surrogates are purely classical at the inference stage

Ω(𝑝𝑜𝑙𝑦 𝑁 , 2# of T gates)



Numerical results
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RMS error VS 𝑁, Λ, 𝑇  (𝑛 = 500)

• Dataset construction of 𝑁-qubit rotational GHZ states: 

• Two-point Correlation: 𝐶𝑖𝑗 =  (𝑋𝑖𝑋𝑗  + 𝑌𝑖𝑌𝑗  + 𝑍𝑖𝑍𝑗)/3 
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Numerical Results: Two-point Correlation of 60-qubit Rotational GHZ States

RMS error for all qubit pairs (Λ = 3, 𝑇 = 1000, 𝑛 = 30)
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Numerical Results: Quantum Simulation & Pre-training VQAs

60-qubit global Hamiltonian simulation Pre-training VQE for 50-qubit TFIMs

HVA with d=99; n=1500; T=300



Further results about learning surrogates
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Beyond kernel-based classical surrogates

We propose two new classical surrogates to predict the behaviors of noisy quantum circuits

Experimental demonstration on a 20-qubits superconducting processor
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Beyond kernel-based classical surrogates

We propose two new classical surrogates to predict the behaviors of noisy quantum circuits

Surrogate 1: kernel-based method on noisy processors

Surrogate 2: regression-based method on noisy processors [correlated inputs; arbitrary data distribution]
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Beyond kernel-based classical surrogates

Task 1: Pre-train VQE for TFIM models. Outperform vanilla VQE with 0.023% measurements.
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Beyond kernel-based classical surrogates

Task 2: Identification of non-equilibrium Floquet symmetry-protected topological phases.



Conclusion & Outlook

29



30

Conclusion & Outlook

Q1: Any provably efficient learning surrogate beyond PAC learning?

Q2: More applications of classical learning surrogates?

Q3: Any advanced classical learning surrogates beyond mean-value estimation?



Thank You for Listening!
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SOTA AI Techniques Quantum Computing

AI QC

Email: yuxuan.du@ntu.edu.sg

Homepage: https://yuxuan-du.github.io/ Personal website

mailto:duyuxuan123@gmail.com
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