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Motivations & Backgrounds



How to understand quantum computers at scale?




Motivations & Backgrounds

« What are large-scale quantum computers?

|Q‘,Era of large-scale quantum computing
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Motivations & Backgrounds

Challenges in Understanding Large-qubit Quantum Circuits:

Conventional approaches become expensive or incapable!

Classical simulators
(State-vector, Tensor-network; (near)-
Clifford, ...)

*%  State space >
Memory ,

Tomography-based approaches
(State, process, shadow, ...)
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?

Efficient for more states;
Few quantum resources

Scarcity

(>50 qubits)
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Question: Is there any efficient classical ML model that can well predict the linear
properties (mean values) of large-qubit quantum circuits?



Question: Is there any efficient classical ML model ... large-qubit quantum circuits?

Yes, it is classical learning surrogate (or agent, emulator, learner ...)
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Problem Setup

Focus: The explored quantum circuits are formed by RZ + Clifford gates (universality)
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Quantum circuit: Arbitrary N-qubit input states, RZ + Clifford gates, incoherent measurements

Efficient classical learner: Computational complexity of training and inference scales with N and d




Efficient classical learning surrogates have many crucial implications

First, learn
from data
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Efficient classical learning surrogates have many crucial implications

Deliver practical applications (resource reduction)
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Main Theoretical Results



Problem Setup: State Space

For an N-qubit parametrized quantum circuit, the concept class (d RZ gates and G-d Clifford gates) is

F ={f(x,0) = Te(p(2)0)|U € Arc(U, d, G)}

with U(x) = [1%, RZ(x)u, € U(2Y) and p(x) = U(x)poU(x)T

Central Aim: Complexity of classical learning surrogates to achieve e-prediction error:

Egn(—rn |h(x,0) — f(x,0)]* < ¢
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Problem Setup: State Space

Central Aim: Complexity of classical learning surrogates to achieve e-prediction error:

Eqr—r.x |h(x,0) — f(z,0) < e

(1. What is the learnability of F in terms of the sample complexity?

o[

3. How to design a detailed algorithm to match the above bounds? DD

i Three subaims< 2. What is the learnability of F in terms of the computational complexity? )



Results for Sub-Aim 1 (sample complexity, Theorem 1)

A brief summary: ©(d/e) training examples are sufficient and necessary to learn F

----- 1 Lower bound TTrT

|
n ~ Q(d) is necessary :«
!

IE:!!:»---[—*J'r,drr]'fI |h(ma O) - f(ms O)F <€

(7T Technical tools --------

|

| @ Covering / Packing net
|

!

| . .
: €§ Hypothesis testing
!

!

!

!

I

Fano inequality
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£ 1 Upper bound |- -~ )

|
* : n ~ 0(d) is sufficient
!



Results for Sub-Aim 2 (computational complexity)

A brief summary: there exists a class of circuits F that need an exponentially computational complexity to learn it.

[MGD2024, arXiv: 2405.02027v2] Limitations from complexity theory

Fuawa = { f(a*) = Tr (U |24) (2*| UT0) ‘ml e {-11}V,0~Do}

BQP ¢ P/Poly | mm) | No alg that can solely use the collected measure-out data to learn f(x*)

in a polynomial time
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Question: Under some practical conditions, is there any efficient classical ML
model that can well predict the linear properties of large-qubit quantum circuits?

Sample efficient & May not computationally efficient
But ...

16



Results for Sub-Aim 3 (algorithmic implementation)

Here we devise an efficient classical learning surrogate to learn mean values for arbitrary observables.

Training data — N !
e N 1| Cos(@) sin@) Cos(®) sin(@) ||] P 'E:'i
' i

1| | Cos Sin Sin Sin :

Classical shadow : (0) (0) (O} {0) 8 :

| C C C i

[ h(©; @Pi

| !

i (@) S |

i et '

: stimated result !

2% ~/ Fast |

| = 7 predictions |

| _ Efficient classical representations =~~~ =~ S

(1. Data collection, interaction with Q) (1. Build kernel, No Q) (1ll. Prediction, No Q)
N , n
{x(l), pT(x(l))}i=1

T Pauli-based snapshots g g
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Results for Sub-Aim 3 (algorithmic implementation)

The proposed kernel-based classical learning surrogate yields

he(x, O) = % i KA (m, ;1:(“':') g (m(i), O)

1=1

p(x) = Z P, (*X)pw by Pauli Transfer Matrix
w

KA (m,m(i)) = Z 2”“’”“(1@(:1:)@@ (m(i)) e R

(Smoothness) E,_;_ ma|IVx Tr(o(0)0)l|, < C.

|

! I

! |

| |

! |

I I

! |

! |

| |

| w,[wlo<A |

| |

! T

i ®,,(x) with w € {0,1,—1}¢ is the trigonometric monomial basis! :r oo ) on®) 5O o @:
|
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. d |1 if w; =0 i i & i

i ‘I)w (:E) — H COS(SBE') if w; =1 : i Cos(®) Cofs-(-o) Cos(©) h(OJ @):

| i=1 | sin(®x;) if w; =—1 : i sin@ 8 :
| [ ’

[ I Estimated result |

1 I 1% - Fast |

I I ! =/ predictions |
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Results for Sub-Aim 3 (proof sketch)

(@

The proof idea is separately bounding the estimation and truncation error:

Eqn |-, l

(o]

11064 (@)) - Tx(Op(a)||

IA

Truncation error Estimation error

. 2 k
(Smoothness) Ey__ a|IVx Tr((x)0)]|, < C. (Pauli-based Shadow error) || O||5,.000 = 3

Sample and runtime efficient | n > 0( (5(4(:) 2329K6—1) E) Eoor b 0) - f(z,0)" <e
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Results for Sub-Aim 3 (theoretical guarantee, Theorem 2)

Generalize to d Rot-Pauli + Clifford + T gates

When U(x) is compose of RZ, H, , CNOT, etc | Beyond near-Clifford simulators; sparse Pauli dynamics

1 .Q(pOly(N), 2# of T gateS)
Classical simulators

(State-vector, Tensor-network; (near)-

Clifford, ...)

] ?
! .
Tomography-based approaches E i S LU
(State, process, shadow, ...) Scarcity + (>45 qubits) i P e e
- 4C ok 1 e Immmmans
n=>0||C|—]|2B“9"%¢ @ S &
€

Surrogates are purely classical at the inference stage

i Ey e rld shadow & n (O] = pa(%).
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Numerical Results: Two-point Correlation of 60-qubit Rotational GHZ States

« Dataset construction of N-qubit rotational GHZ states:

0---0) +1---

Ry (1)

|GHZ(x)) = (RYl(a:l) ® RY y/2(x2) ® RYN(:I:E))

V2

« Two-point Correlation: C;; = (XL.XJ. +YY, + Zl.Zj)/3

8]
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RMS error for all qubit pairs (A =3,T = 1000, n = 30)
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Numerical Results: Quantum Simulation & Pre-training VQAs

60-qubit global Hamiltonian simulation Pre-training VQE for 50-qubit TFIMs
U(z) = H;l:l(e—mj@i‘;lzi ®N , RX(7/3)) HVA with d=99; n=1500; T=300
10188y
: ' J=-02
ﬂ.E: Ideal Shadow Exact
0.6 °
5 0.4
0.4 d
N . . 03
~ 0.2 510 2.
: (& =
ﬂ.ﬂ_ —15+ 0.1
—ﬂ'.E -20 0.0
-0.4 5 ]
0 50 100 150 200 250 300 350 400 450 500

Iterations
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Further results about learning surrogates



Beyond kernel-based classical surrogates

We propose two new classical surrogates to predict the behaviors of noisy quantum circuits

Hamiltonian Simulation
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Experimental demonstration on a 20-qubits superconducting processor

25



Beyond kernel-based classical surrogates

We propose two new classical surrogates to predict the behaviors of noisy quantum circuits

/~ Surrogate 1: kernel-based method on noisy processors

1 2B
o CRANIE

hes(z', O) Z,{A (:.r: m(m)) g(z®,0) By n= (|(’Z(mm{

Surrogate 2: regression-based method on noisy processors [correlated inputs; arbitrary data distribution]

o ( 1 )“eq{”m log(1/5)
q(1+ R) 9

L hes(z, W) = (Pe(a)(2), W) mmm)
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Beyond kernel-based classical surrogates

Task 1: Pre-train VQE for TFIM models. Outperform vanilla VQE with 0.023% measurements.

a . b [
' R2 -0.5 0.0 0.5 e Initialized o A=1 o A=2 0.81 —— O-VQE — —— Pre-train
o6 O Pearson's R 07s } 0.6- 7 Verification —&— Post-train
e O =03 : ...{}E{E}
g . 8 =05 | %050 e, I & 0.4 1A
/ ¢ -
0.4 1 =0.8 _ ~ == |
0251 4/ J '~/ Initiglized 0-27 i
0.00 ¢ e o« 4 ¢ A1 . R e e
0oL | | | | 2000, 500, - 7 2_ O
400 800 1200 1600 2000 n 800 - 0 25 50 75 100
n 400 Iterations
d 012 e
w1 = 1000 n=1500 n =2000 101 w=mn=1000 n = 2000 n=1500

0.10 1 Pre-trained Initialized
0.8

u% | 0.6 ] ; L ;|' ,

o bW
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00005 03 -0 j 01 03 05 00— . T Z l




Beyond kernel-based classical surrogates

Task 2: Identification of non-equilibrium Floguet symmetry-protected topological phases.

FSPT phase

] _hqs




Conclusion & Outlook



Conclusion & Outlook

(S &P

Q1: Any provably efficient learning surrogate beyond PAC learning? | i Quam"m'fommrs M — |
i Line%frrz%e)rties Tr(N ;nrl\giarlp&?rp(c;rtlig; 2) Reconstructing qluantum systems
: mrs {Entanglement a:i:;abilizerentrop} ’ Implicit state :icorwstructian
: Magnetization el Mutual nformaion JP(;)Qi ;rili) (il)
. . . . . 1 \ Phase classification Y \
Q2: More applications of classical learning surrogates? s T T

Q3: Any advanced classical learning surrogates beyond mean-value estimation?

Artificial intelligence for representing and characterizing quantum systems
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Thank You for Listening!

SOTAAI Techniques S Quantum Computing

Email: yuxuan.du@ntu.edu.sg
Homepage: https://yuxuan-du.github.io/

Personal website
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