

Efficient classical learning surrogates for quantum circuits at scale

Yuxuan Du

CCDS & SPMS NTU

2025.12.11

One-page summary

Article | [Open access](#) | Published: 22 April 2025

Efficient learning for linear properties of bounded-gate quantum circuits

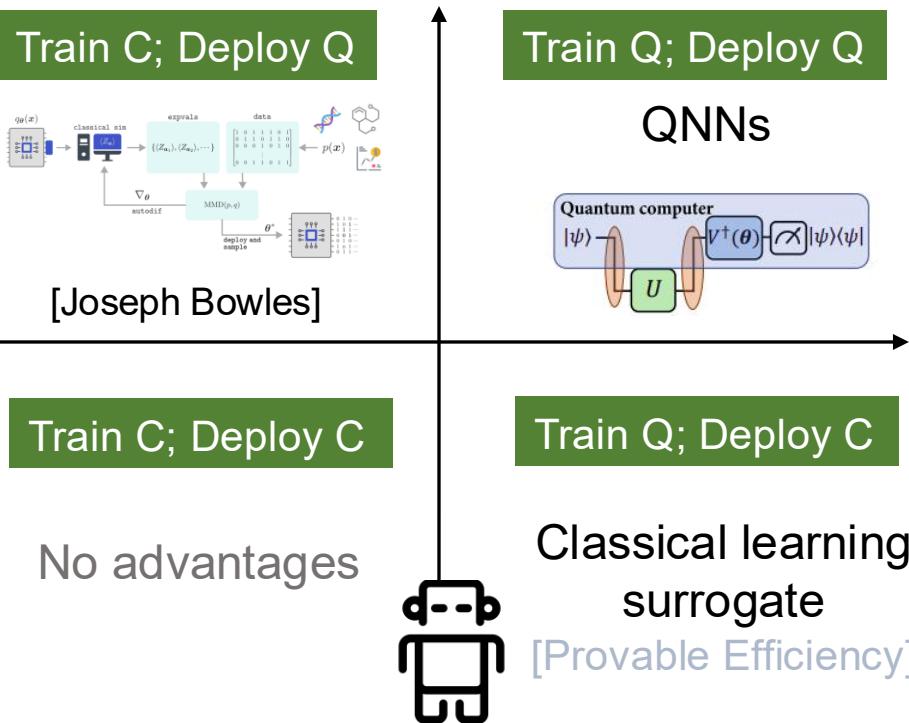
[Yuxuan Du](#) [Min-Hsiu Hsieh](#) & [Dacheng Tao](#)

[Nature Communications](#) 16, Article number: 3790 (2025) | [Cite this article](#)

3234 Accesses | 3 Citations | 20 Altmetric | [Metrics](#)

Min-Hsiu Hsieh Dacheng Tao

Classical learning surrogates



Demonstration of Efficient Predictive Surrogates for Large-scale Quantum Processors

Wei-You Liao^{1,*}, Yuxuan Du^{2,*†}, Xinbiao Wang^{2,*}, Tian-Ci Tian¹,

Yong Luo³, Bo Du³, Dacheng Tao^{2,†}, and He-Liang Huang^{1†}

¹*Henan Key Laboratory of Quantum Information and Cryptography, Zhengzhou, Henan 450000, China*

²*College of Computing and Data Science, Nanyang Technological University, Singapore 639798, Singapore* and

³*Institute of Artificial Intelligence, School of Computer Science, Wuhan University, Wuhan 430072, China*

[arXiv:2507.1747](#)

(noisy scenario;
20-qubit SC QC)

Sample-efficient quantum error mitigation via classical learning surrogates

Wei-You Liao,¹ Ge Yan,² Yujin Song,² Tian-Ci Tian,¹ Wei-Ming

Zhu,¹ De-Tao Jiang,¹ Yuxuan Du,^{2,3,*} and He-Liang Huang,^{1,†}

¹*Henan Key Laboratory of Quantum Information and Cryptography, Zhengzhou, Henan 450000, China*

²*College of Computing and Data Science, Nanyang Technological University, Singapore, Singapore*

³*School of Physical and Mathematical Science, Nanyang Technological University, Singapore, Singapore*

[arXiv:2511.07092](#)

(noisy scenario;
100-qubit ZNE)

Artificial intelligence for representing and characterizing quantum systems

Yuxuan Du^{1,2}, Yan Zhu^{1,2}, Yuan-Hang Zhang^{1,3}, Min-Hsiu Hsieh^{1,4}, Patrick Rebentrost^{1,5,6}, Weibo Gao^{1,7,8}, Ya-Dong Wu^{1,8,*}, Jens Eisert^{1,9,10}, Giulio Chiribella^{1,2,11,12}, Dacheng Tao^{1,13}, and Barry C. Sanders^{1,13}

¹*College of Computing and Data Science, Nanyang Technological University, Singapore 639798, Singapore*

²*QICI Quantum Information and Computation Initiative, Department of Computer Science,*

The University of Hong Kong, Pokfulam Road, Hong Kong

³*Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA*

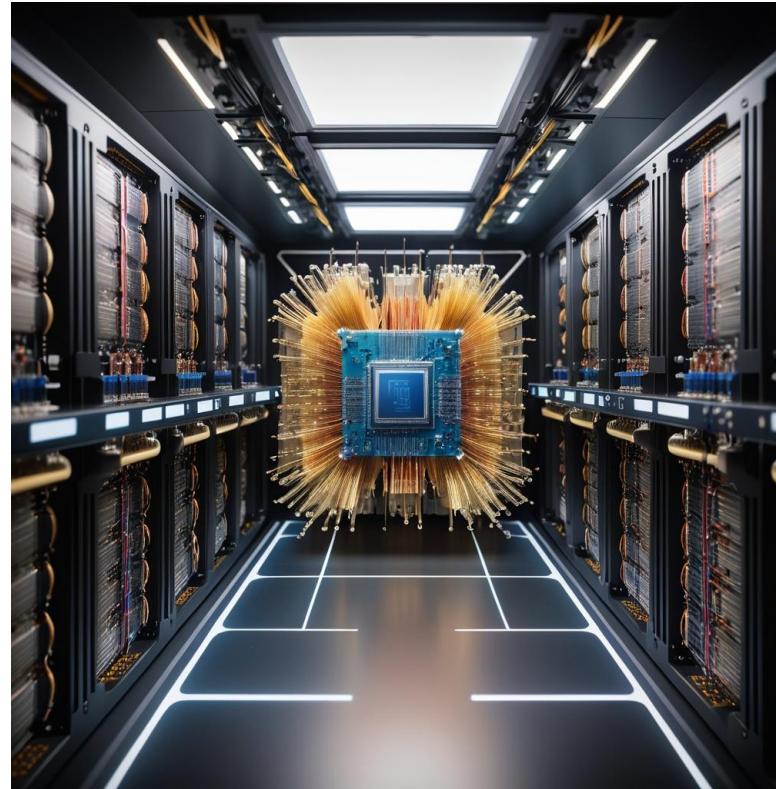
⁴*Hon Hai (Foxconn) Research Institute, Taipei, Taiwan*

[arXiv:2509.04923](#)

(survey;
classical AI for Q)

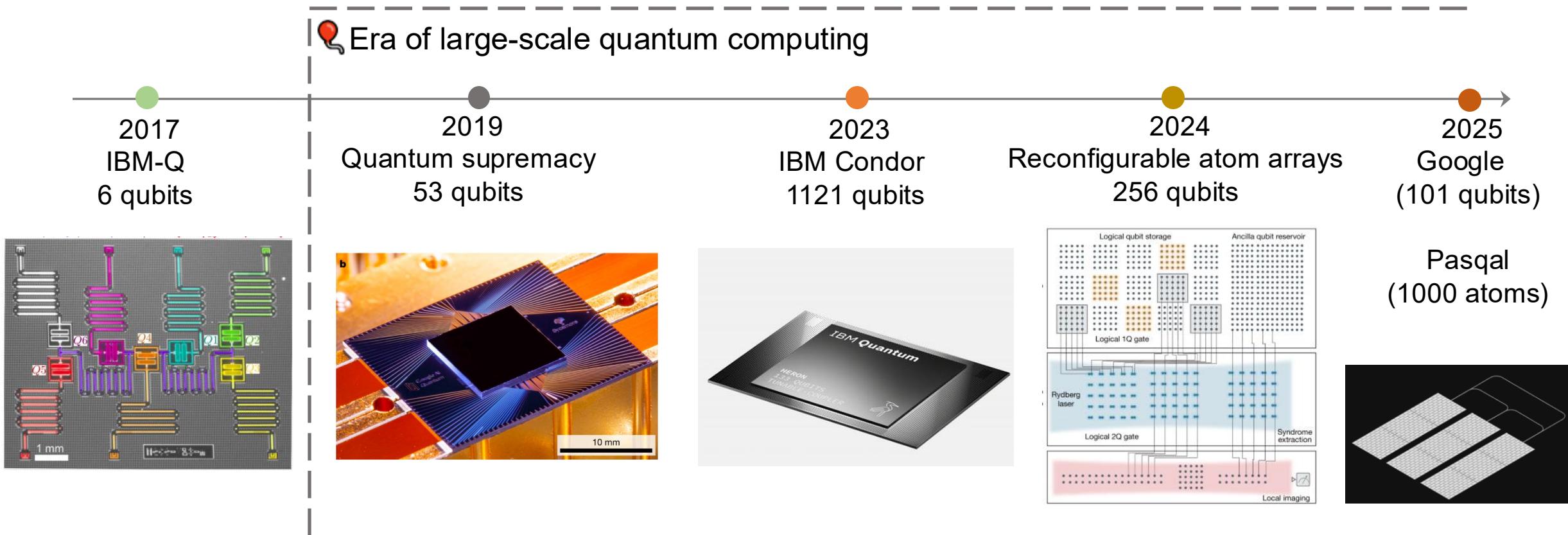
Motivations & Backgrounds

How to understand quantum computers at scale?



Motivations & Backgrounds

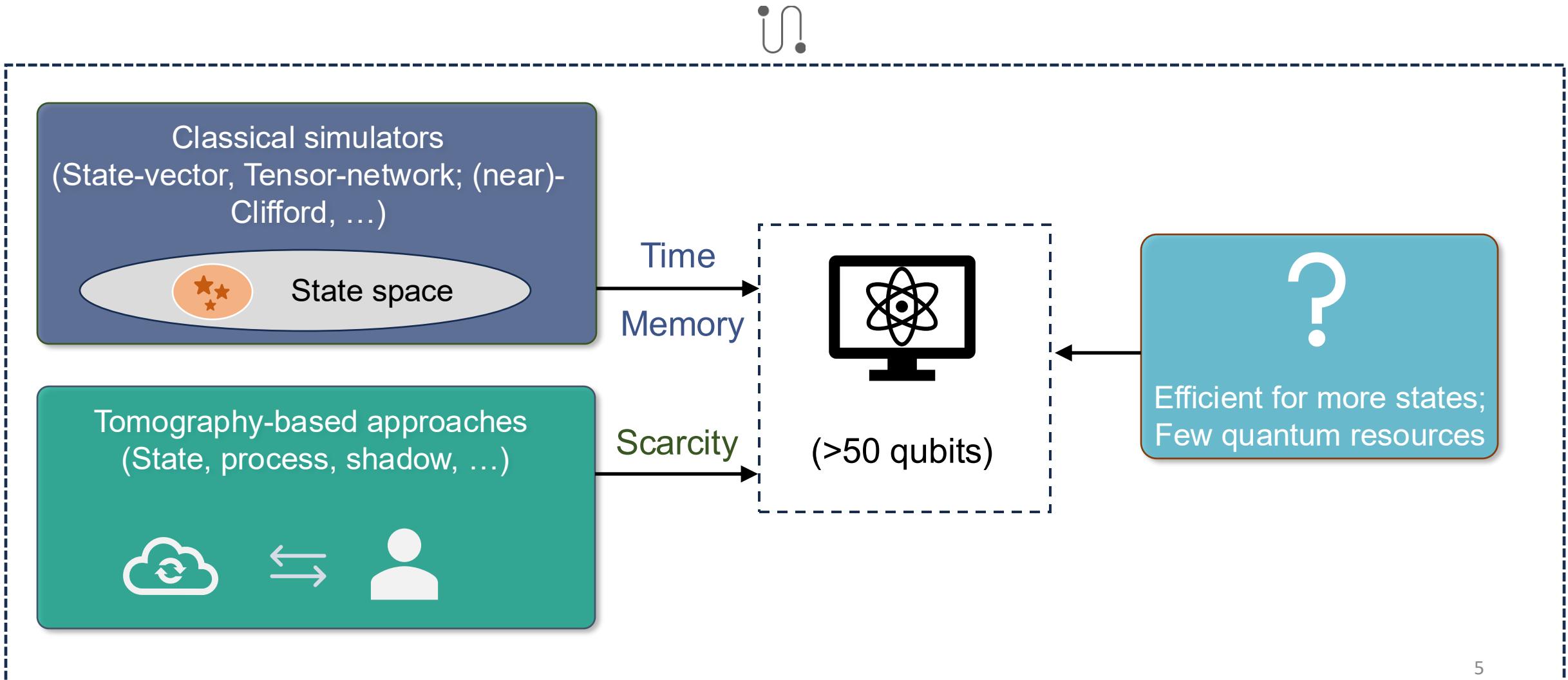
- What are large-scale quantum computers?



Motivations & Backgrounds

Challenges in Understanding Large-qubit Quantum Circuits:

Conventional approaches become **expensive** or **incapable**!



Question: Is there any **efficient** classical ML model that can well predict the linear properties (mean values) of large-qubit quantum circuits?

Question: Is there any efficient classical ML model ... large-qubit quantum circuits?

Yes, it is classical *learning* surrogate (or agent, emulator, learner ...)

Article | [Open access](#) | Published: 22 April 2025

Efficient learning for linear properties of bounded-gate quantum circuits

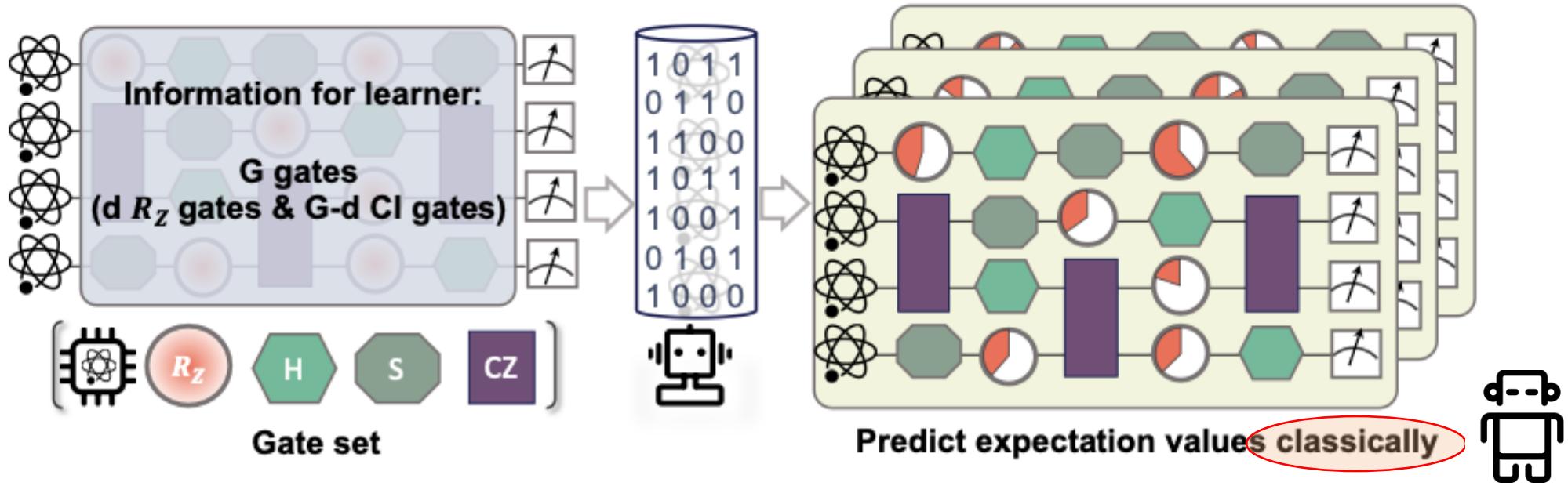
[Yuxuan Du](#) [Min-Hsiu Hsieh](#) & [Dacheng Tao](#)

[Nature Communications](#) **16**, Article number: 3790 (2025) | [Cite this article](#)

3234 Accesses | 3 Citations | 20 Altmetric | [Metrics](#)

Problem Setup

Focus: The explored quantum circuits are formed by RZ + Clifford gates (universality)

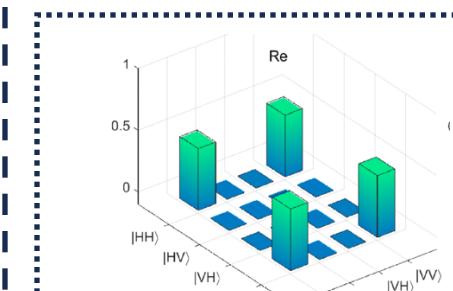


Quantum circuit: Arbitrary N -qubit input states, RZ + Clifford gates, incoherent measurements

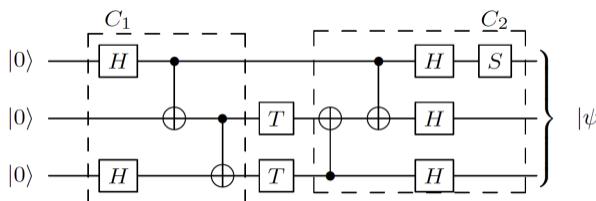
Efficient classical learner: Computational complexity of training and inference polynomially scales with N and d

Efficient classical learning surrogates have many crucial implications

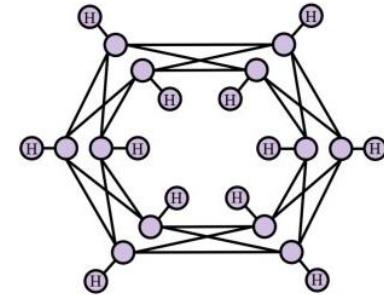
Enrich quantum learning theory



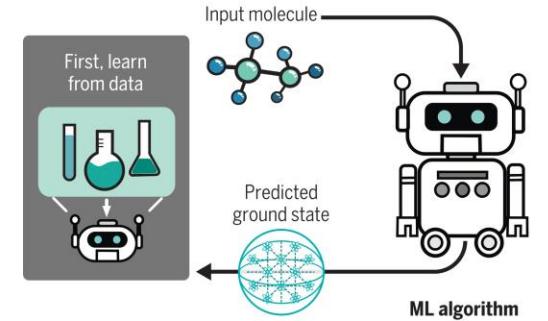
State learning



t-doped Clifford circuits

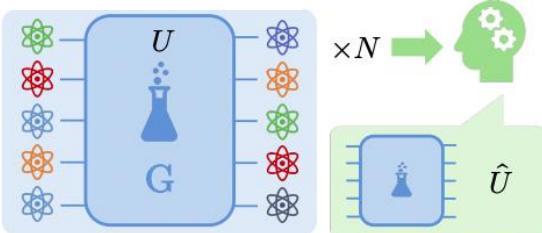


Graph states

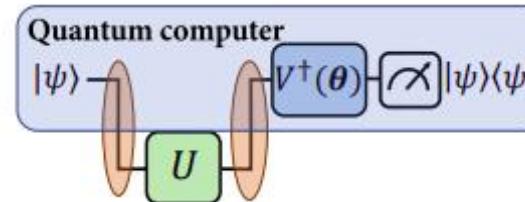
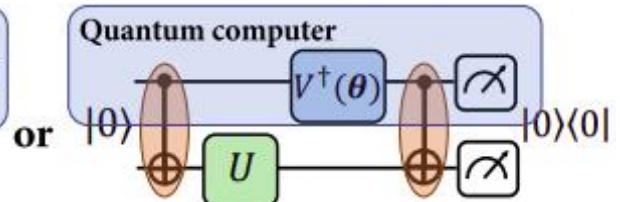


Ground states properties

Quantum Learner (Train Q; Deploy Q)



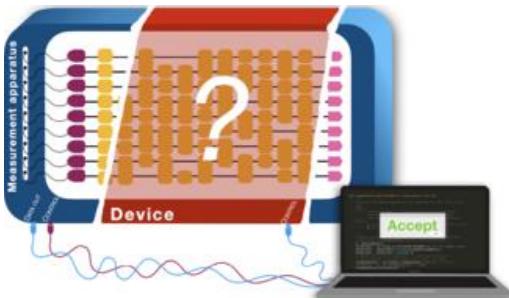
Dynamics of bounded-gate circuit



Dynamics of quantum circuit

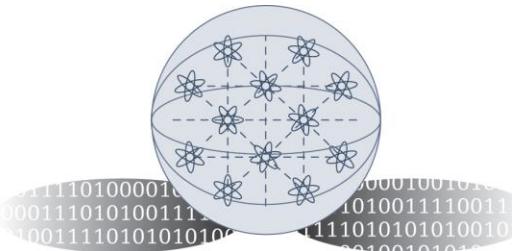
Deliver practical applications (resource reduction)

Quantum certification



- Fidelity
- Purity
- Entropy
- ...

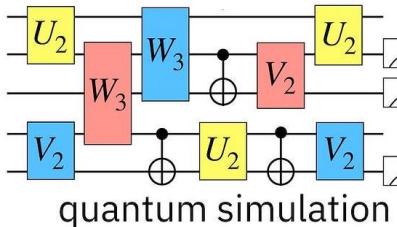
Quantum shadow estimation



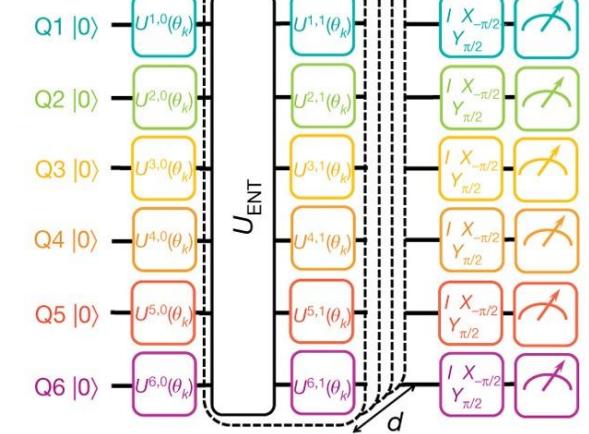
Quantum simulation

classical preprocessing

CT-F12
integrals



VQAs



Main Theoretical Results

Problem Setup: State Space

For an N -qubit parametrized quantum circuit, the **concept class** (d RZ gates and G-d Clifford gates) is

$$\mathcal{F} = \left\{ f(\mathbf{x}, O) = \text{Tr}(\rho(\mathbf{x})O) \middle| U \in \text{Arc}(U, d, G) \right\}$$

with $U(\mathbf{x}) = \prod_{l=1}^d \text{RZ}(x_l)u_e \in U(2^N)$ and $\rho(\mathbf{x}) = U(\mathbf{x})\rho_0U(\mathbf{x})^\top$

Central Aim: Complexity of **classical learning surrogates** to achieve ϵ -prediction error:

$$\mathbb{E}_{\mathbf{x} \sim [-\pi, \pi]^d} |h(\mathbf{x}, O) - f(\mathbf{x}, O)|^2 \leq \epsilon$$

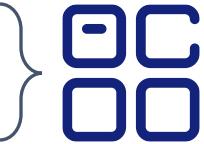
Central Aim: Complexity of **classical learning surrogates** to achieve ϵ -prediction error:

$$\mathbb{E}_{\mathbf{x} \sim [-\pi, \pi]^d} |h(\mathbf{x}, O) - f(\mathbf{x}, O)|^2 \leq \epsilon$$

Three subaims {

1. What is the learnability of \mathcal{F} in terms of the sample complexity?
2. What is the learnability of \mathcal{F} in terms of the computational complexity?
3. How to design a detailed algorithm to match the above bounds?

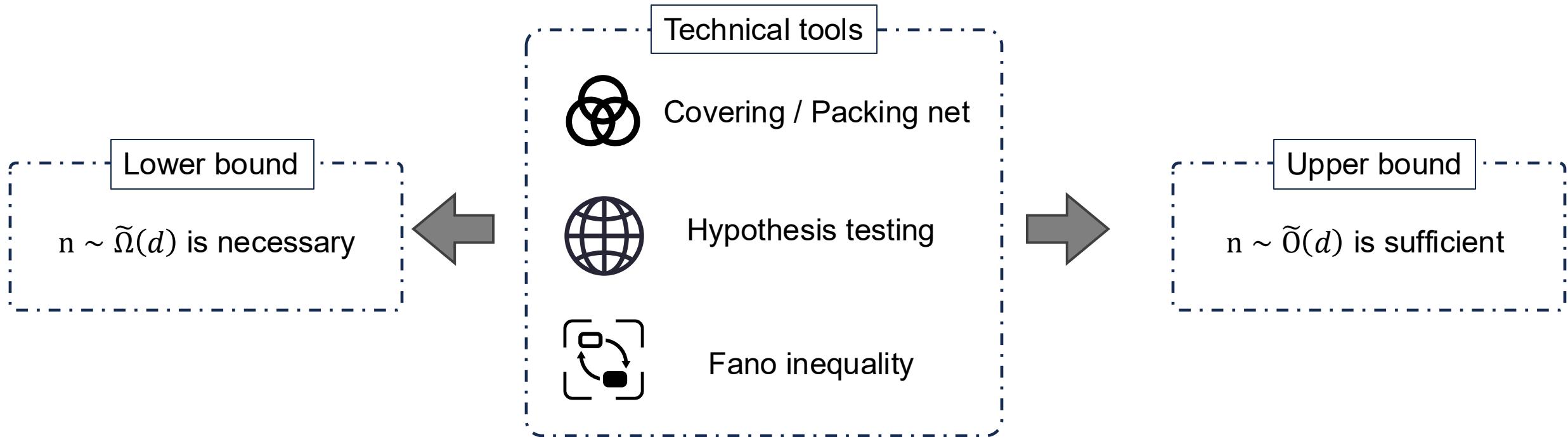
} {



Results for Sub-Aim 1 (sample complexity, Theorem 1)

A brief summary: $\Theta(d/\epsilon)$ training examples are sufficient and necessary to learn \mathcal{F}

$$\mathbb{E}_{\mathbf{x} \sim [-\pi, \pi]^d} |h(\mathbf{x}, O) - f(\mathbf{x}, O)|^2 \leq \epsilon$$



Results for Sub-Aim 2 (computational complexity)

A brief summary: there exists a class of circuits \mathcal{F} that need an exponentially computational complexity to learn it.

[MGD2024, arXiv: 2405.02027v2] Limitations from complexity theory

$$\mathcal{F}_{\text{Hard}} = \left\{ f(\mathbf{x}^\perp) = \text{Tr} (U |\mathbf{x}^\perp\rangle \langle \mathbf{x}^\perp| U^\dagger O) \mid \mathbf{x}^\perp \in \{-1, 1\}^N, O \sim \mathbb{D}_O \right\}$$

$\text{BQP} \subsetneq \text{P/Poly}$

No alg that can solely use the collected measure-out data to learn $f(\mathbf{x}^\perp)$
in a **polynomial** time

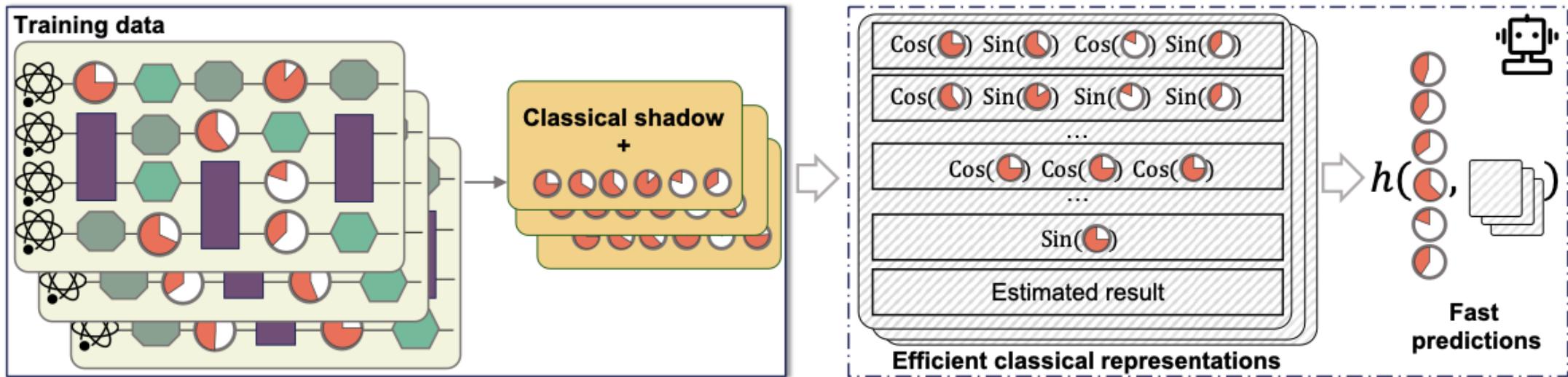
Question: Under some **practical conditions**, is there any efficient classical ML model that can well predict the linear properties of large-qubit quantum circuits?

Sample efficient & May not computationally efficient

But ...

Results for Sub-Aim 3 (algorithmic implementation)

Here we devise **an efficient classical learning surrogate** to learn mean values for arbitrary observables.



(I. Data collection, interaction with Q)

$$\{\mathbf{x}^{(i)}, \tilde{\rho}_T(\mathbf{x}^{(i)})\}_{i=1}^n$$

T Pauli-based snapshots

(II. Build kernel, No Q)

(III. Prediction, No Q)

Results for Sub-Aim 3 (algorithmic implementation)

The proposed kernel-based classical learning surrogate yields

$$h_s(\mathbf{x}, O) = \frac{1}{n} \sum_{i=1}^n \kappa_\Lambda(\mathbf{x}, \mathbf{x}^{(i)}) g(\mathbf{x}^{(i)}, O)$$

$\kappa_\Lambda(\mathbf{x}, \mathbf{x}^{(i)})$: a truncated trigonometric monomial kernel with

$$\kappa_\Lambda(\mathbf{x}, \mathbf{x}^{(i)}) = \sum_{\omega, \|\omega\|_0 \leq \Lambda} 2^{\|\omega\|_0} \Phi_\omega(\mathbf{x}) \Phi_\omega(\mathbf{x}^{(i)}) \in \mathbb{R}$$

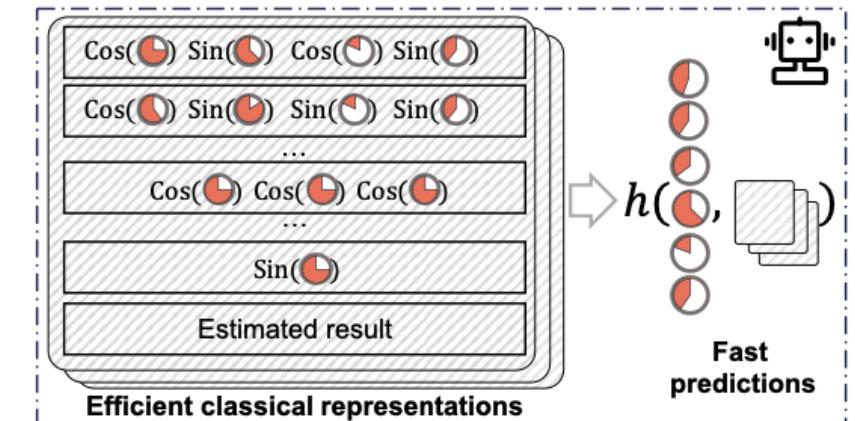
$\Phi_\omega(\mathbf{x})$ with $\omega \in \{0, 1, -1\}^d$ is the trigonometric monomial basis

$$\Phi_\omega(\mathbf{x}) = \prod_{i=1}^d \begin{cases} 1 & \text{if } \omega_i = 0 \\ \cos(\mathbf{x}_i) & \text{if } \omega_i = 1 \\ \sin(\mathbf{x}_i) & \text{if } \omega_i = -1 \end{cases}.$$

$g(\mathbf{x}^{(i)}, O) = \text{Tr}(\tilde{\rho}_T(\mathbf{x}^{(i)}) O)$: shadow estimation

$$\rho(\mathbf{x}) = \sum_{\omega} \Phi_\omega(\mathbf{x}) \rho_\omega \text{ by Pauli Transfer Matrix}$$

(Smoothness) $\mathbb{E}_{\mathbf{x} \sim [-\pi, \pi]^d} \|\nabla_{\mathbf{x}} \text{Tr}(\rho(\mathbf{x}) O)\|_2 \leq C$.



Results for Sub-Aim 3 (proof sketch)

The proof idea is separately bounding the estimation and truncation error:

$$\begin{aligned} & \mathbb{E}_{\mathbf{x} \sim [-\pi, \pi]^d} \left[\left| \text{Tr}(O\hat{\sigma}_n^{(1)}(\mathbf{x})) - \text{Tr}(O\rho(\mathbf{x})) \right|^2 \right] \\ & \leq \left(\sqrt{\mathbb{E}_{\mathbf{x} \sim [-\pi, \pi]^d} \left[\left| \text{Tr}(O\rho_\Lambda^{(1)}(\mathbf{x})) - \text{Tr}(O\rho(\mathbf{x})) \right|^2 \right]} + \sqrt{\mathbb{E}_{\mathbf{x} \sim [-\pi, \pi]^d} \left[\left| \text{Tr}(O\sigma_n^{(1)}(\mathbf{x})) - \text{Tr}(O\rho_\Lambda(\mathbf{x})) \right|^2 \right]} \right)^2 \end{aligned}$$

Truncation error

Estimation error

(Smoothness) $\mathbb{E}_{\mathbf{x} \sim [-\pi, \pi]^d} \left\| \nabla_{\mathbf{x}} \text{Tr}(\rho(\mathbf{x})O) \right\|_2 \leq C.$

(Pauli-based Shadow error) $\|O\|_{\text{shadow}}^2 = 3^k$

$$\mathbb{E}_{\mathbf{x} \sim [-\pi, \pi]^d} \left| \text{Tr}(O\rho_\Lambda(\mathbf{x})) - \text{Tr}(O\rho(\mathbf{x})) \right|^2 \leq \frac{C}{\Lambda}.$$

$$\mathbb{E}_{\mathbf{x} \sim [-\pi, \pi]^d} \left[\left| \text{Tr}(O\hat{\sigma}_n(\mathbf{x})) - \text{Tr}(O\rho_\Lambda(\mathbf{x})) \right|^2 \right] \leq |\mathfrak{C}(\Lambda)| \frac{1}{2n} B^2 9^K \log \left(\frac{2 \cdot |\mathfrak{C}(\Lambda)|}{\delta} \right)$$

Sample and runtime efficient

$$n \geq \tilde{O} \left(\left| \mathfrak{C} \left(\frac{4C}{\epsilon} \right) \right| 2B^2 9^K \epsilon^{-1} \right) \rightarrow \mathbb{E}_{\mathbf{x} \sim [-\pi, \pi]^d} |h(\mathbf{x}, O) - f(\mathbf{x}, O)|^2 \leq \epsilon$$

Generalize to d Rot-Pauli + Clifford + T gates

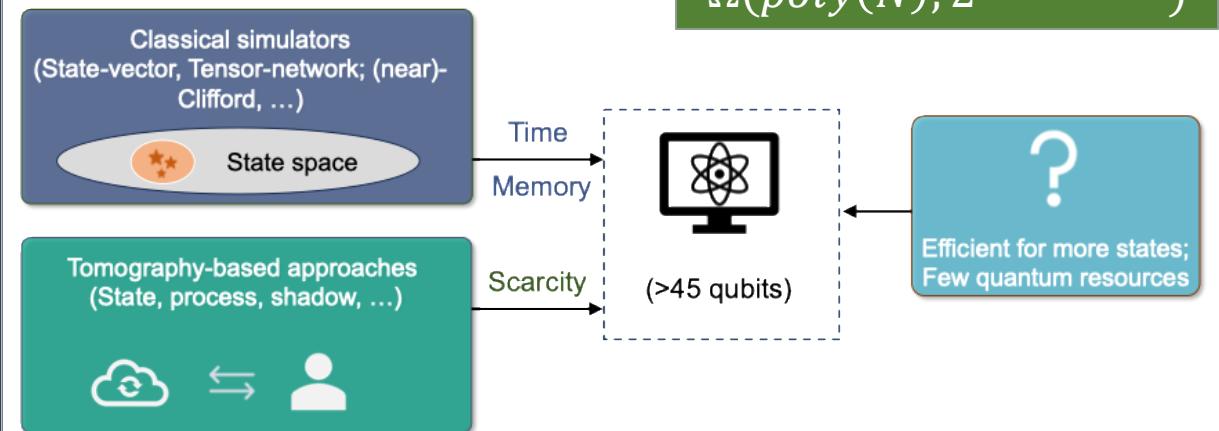
When $U(x)$ is composed of RZ, H, T gates, CNOT, etc

$$\mathbb{E}_{x \sim [-\pi, \pi]^d, \text{ shadow}} [\hat{\sigma}_n(x)] = \rho_\Lambda(x).$$

$$n \geq \tilde{O} \left(\left| \mathfrak{C} \left(\frac{4C}{\epsilon} \right) \right| 2B^2 9^K \epsilon^{-1} \right)$$

Beyond near-Clifford simulators; sparse Pauli dynamics

$\Omega(\text{poly}(N), 2^{\# \text{ of T gates}})$



Surrogates are purely classical at the inference stage

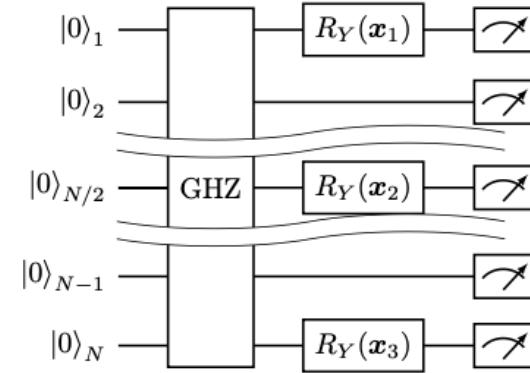
Numerical results

Numerical Results: Two-point Correlation of 60-qubit Rotational GHZ States

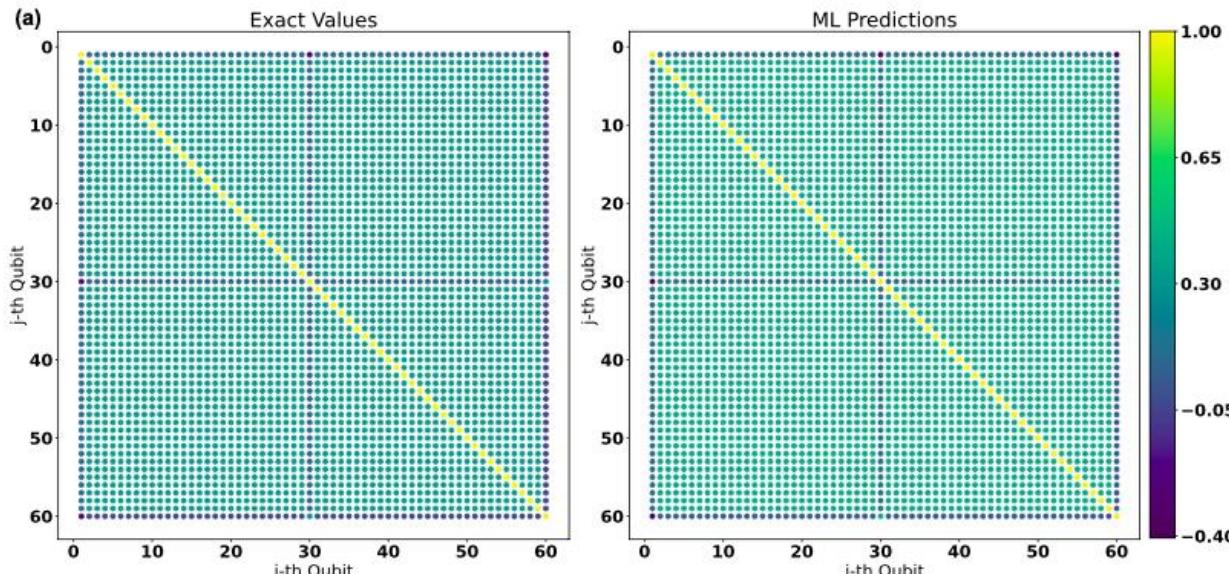
- Dataset construction of N -qubit rotational GHZ states:

$$|\text{GHZ}(\mathbf{x})\rangle = (\text{RY}_1(\mathbf{x}_1) \otimes \text{RY}_{N/2}(\mathbf{x}_2) \otimes \text{RY}_N(\mathbf{x}_3)) \frac{|0\cdots 0\rangle + |1\cdots 1\rangle}{\sqrt{2}}.$$

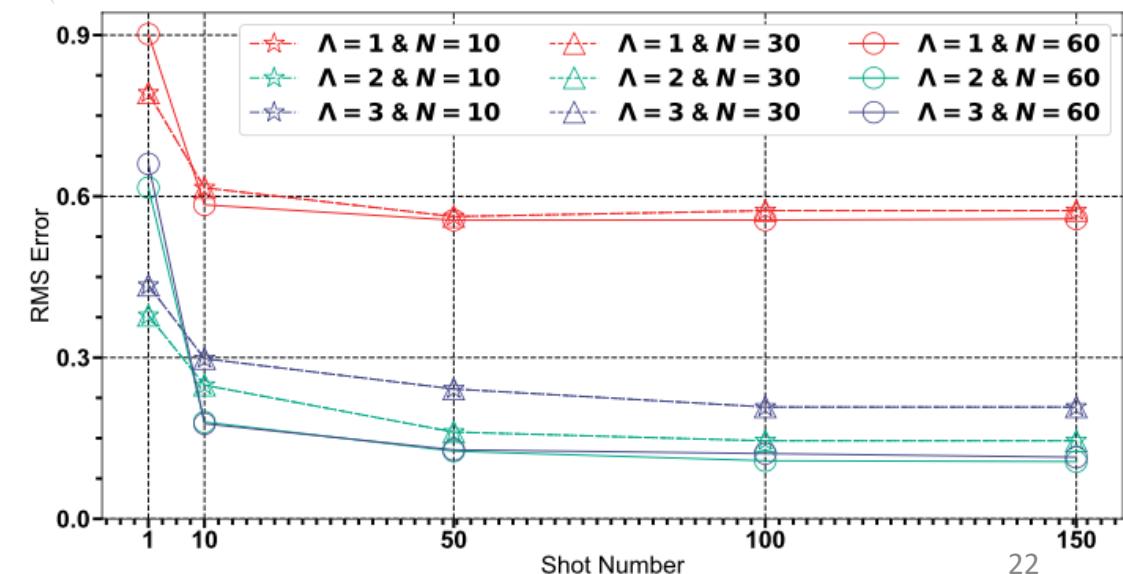
- Two-point Correlation: $C_{ij} = (X_i X_j + Y_i Y_j + Z_i Z_j)/3$



RMS error for all qubit pairs ($\Lambda = 3, T = 1000, n = 30$)

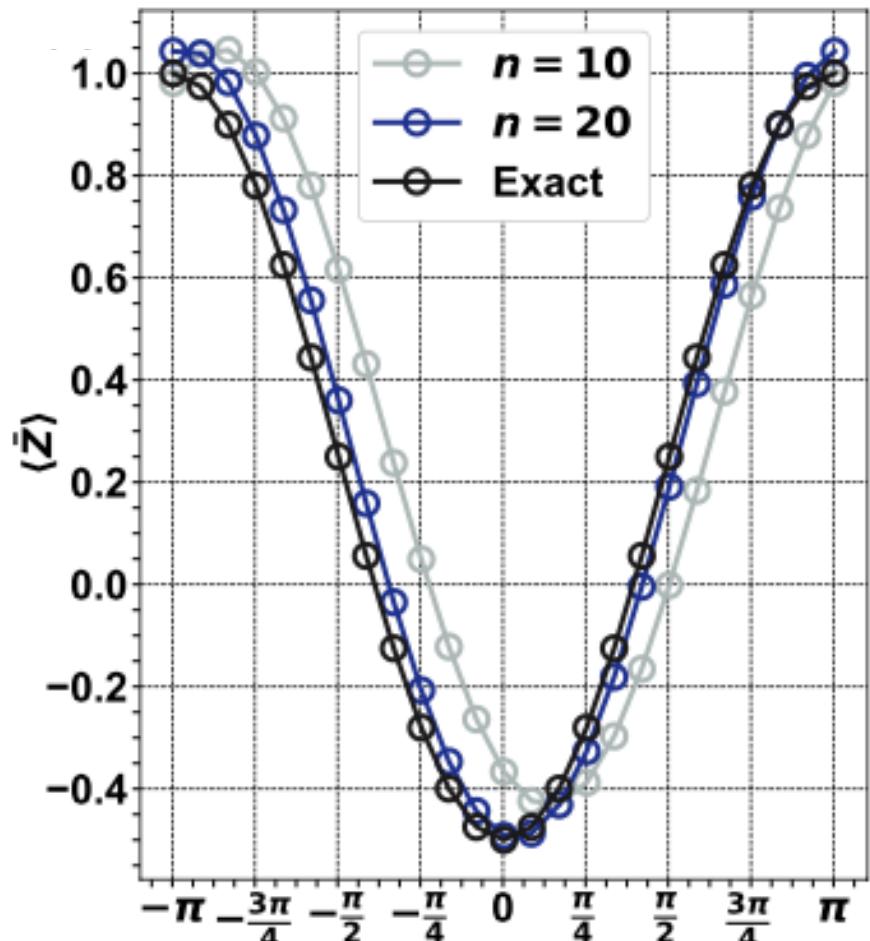


RMS error VS N, Λ, T ($n = 500$)



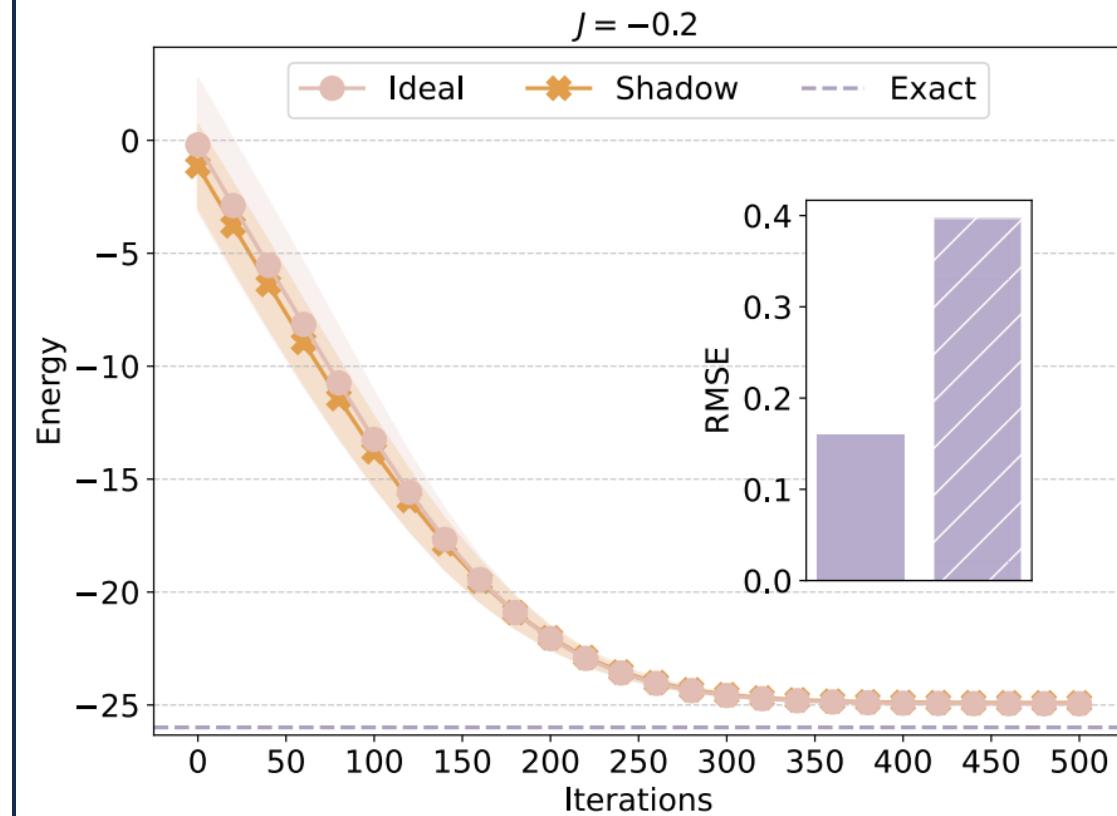
60-qubit global Hamiltonian simulation

$$U(\mathbf{x}) = \prod_{j=1}^d (e^{-i\mathbf{x}_j \otimes_{i=1}^N Z_i} \otimes_{i=1}^N \text{RX}(\pi/3))$$



Pre-training VQE for 50-qubit TFIMs

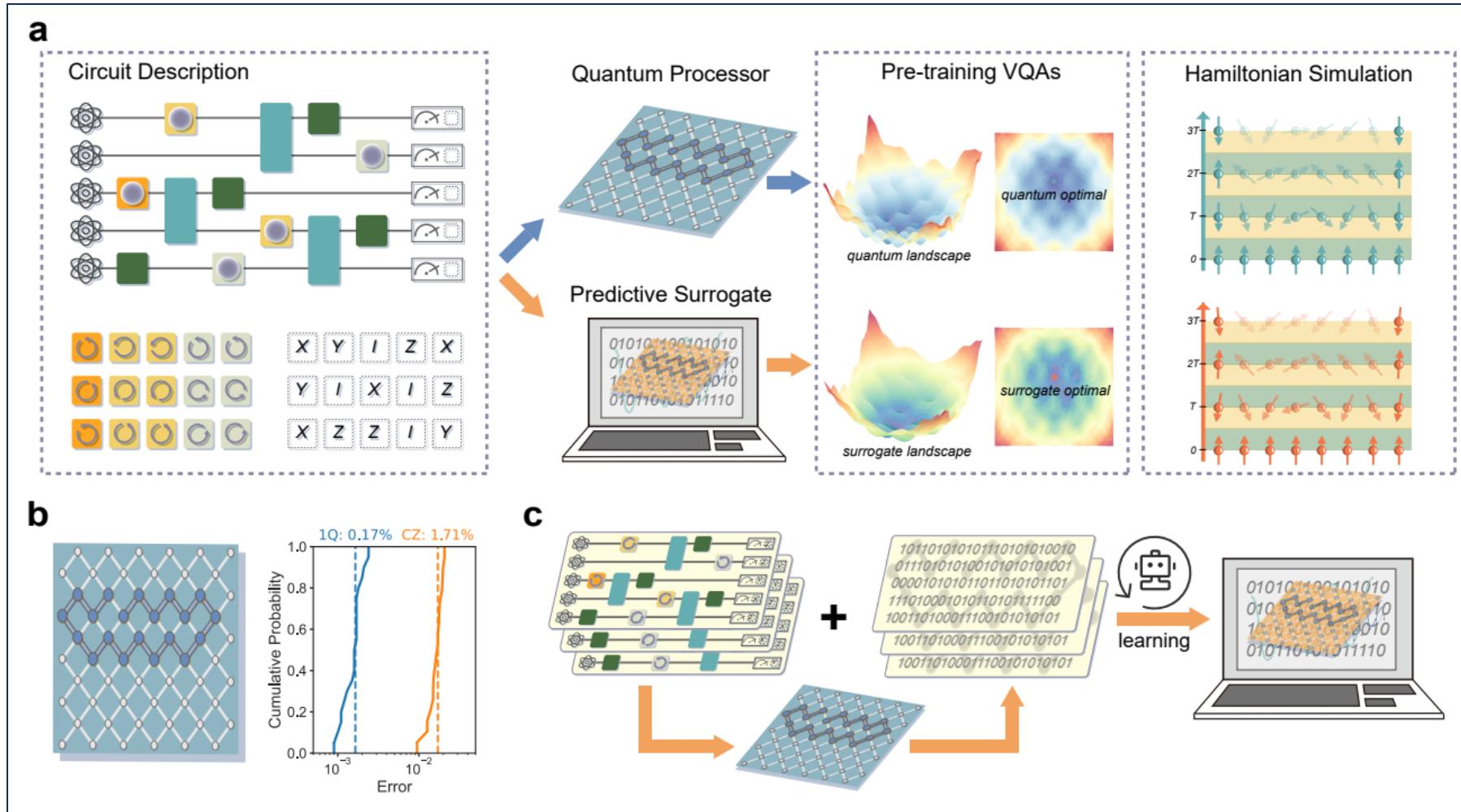
HVA with $d=99$; $n=1500$; $T=300$



Further results about learning surrogates

Beyond kernel-based classical surrogates

We propose two new classical surrogates to predict the behaviors of **noisy** quantum circuits



Experimental demonstration on a 20-qubits superconducting processor

Beyond kernel-based classical surrogates

We propose two new classical surrogates to predict the behaviors of **noisy** quantum circuits

Surrogate 1: kernel-based method on noisy processors

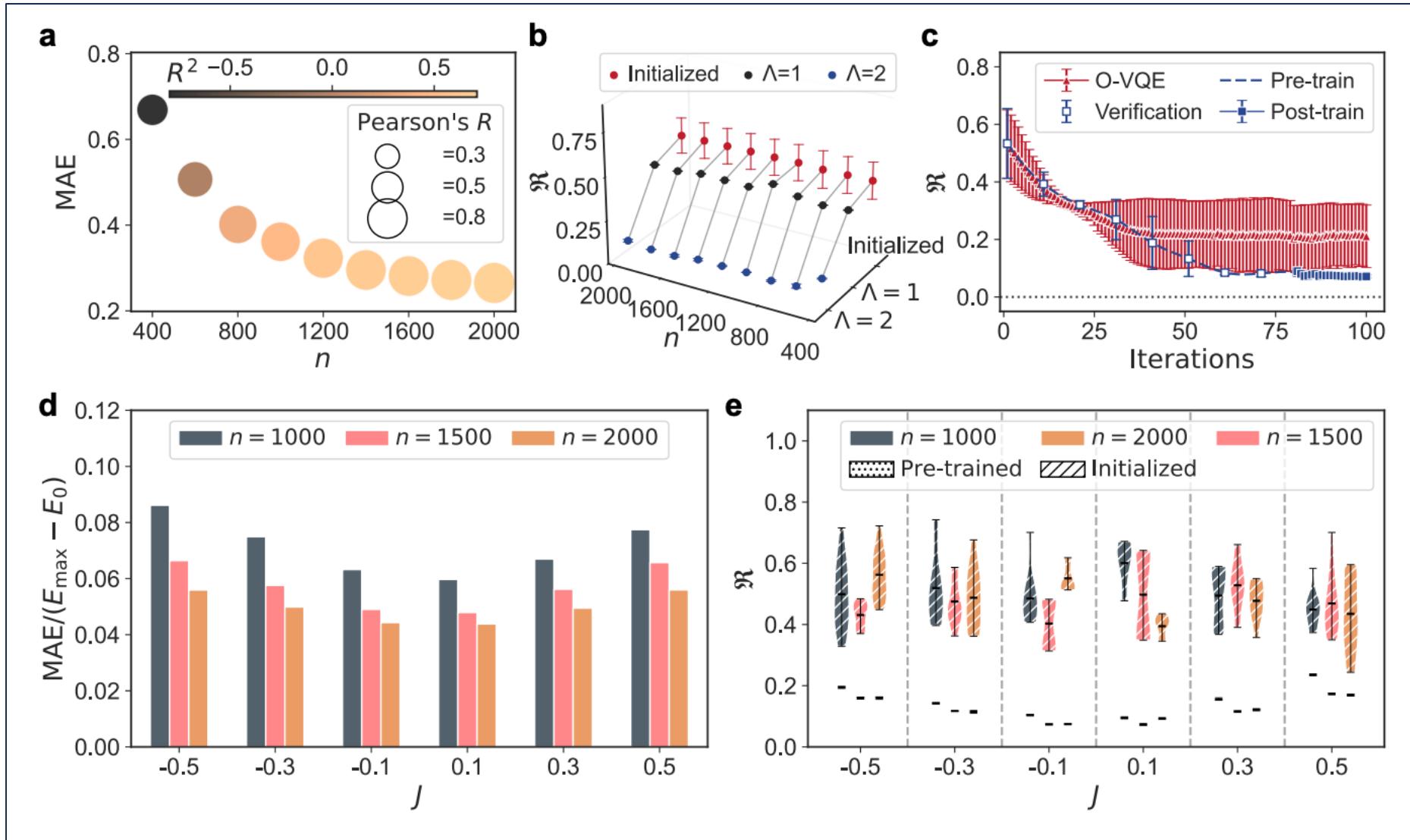
$$h_{\text{cs}}(\mathbf{x}', O) = \frac{1}{n} \sum_{i=1}^n \kappa_{\Lambda}(\mathbf{x}', \mathbf{x}^{(i)}) g(\mathbf{x}^{(i)}, O) \rightarrow n = \tilde{\Omega}\left(\left|\mathfrak{C}\left(\min\left\{\frac{4C}{\epsilon}, \frac{1}{2(p+p_Z)} \log\left(\frac{2B}{\sqrt{\epsilon}}\right)\right\}\right)\right| \frac{2B^{29K}}{\epsilon}\right)$$

Surrogate 2: regression-based method on noisy processors [**correlated inputs; arbitrary data distribution**]

$$h_{\text{qs}}(\mathbf{x}, \hat{\mathbf{w}}) = \langle \Phi_{\mathfrak{C}(\Lambda)}(\mathbf{x}), \hat{\mathbf{w}} \rangle \rightarrow n = \left(\frac{1}{q(1+R)}\right)^{4deq(1+R)} \cdot \frac{\log(1/\delta)}{9}$$

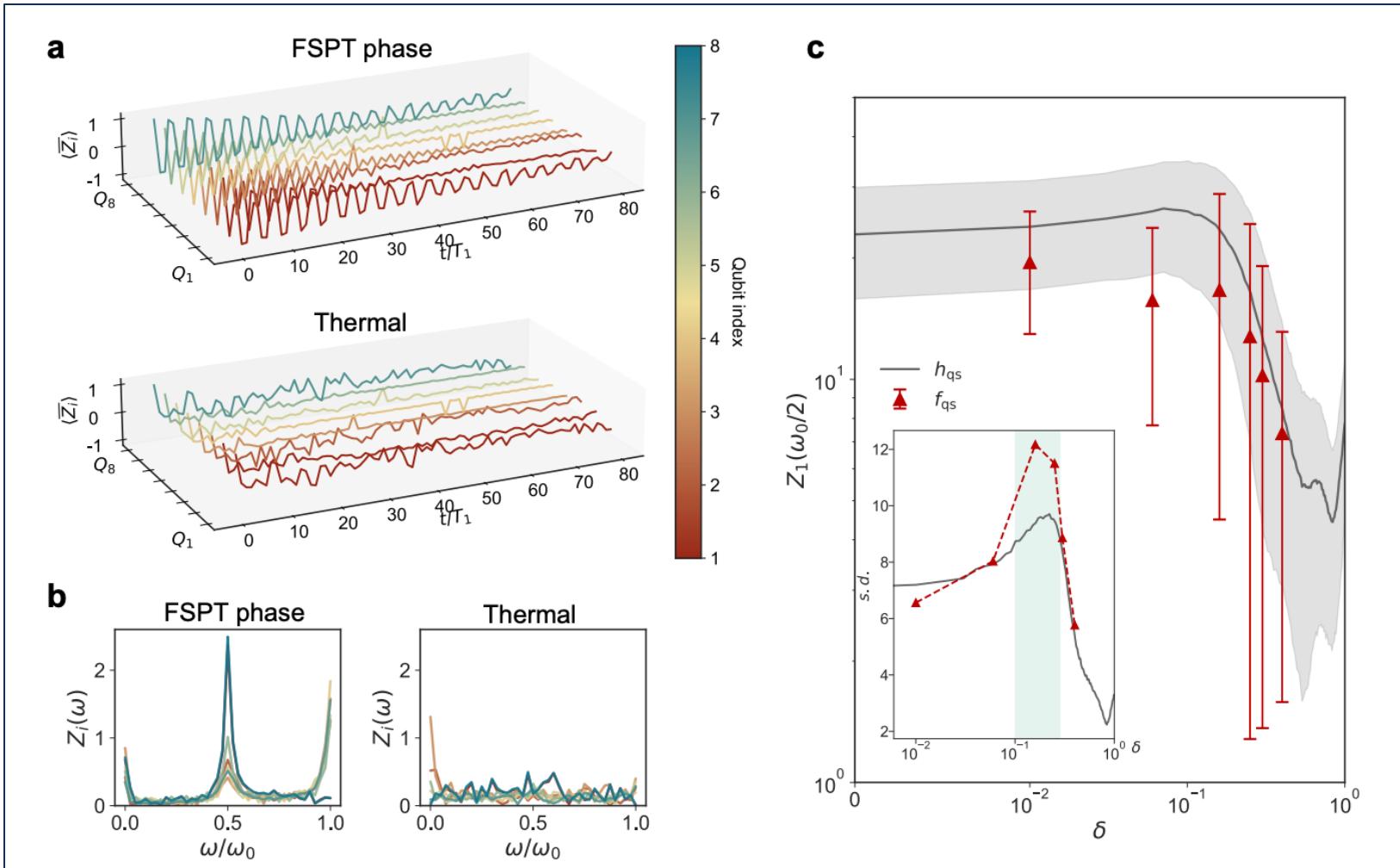
Beyond kernel-based classical surrogates

Task 1: Pre-train VQE for TFIM models. Outperform vanilla VQE with **0.023%** measurements.



Beyond kernel-based classical surrogates

Task 2: Identification of non-equilibrium Floquet symmetry-protected topological phases.



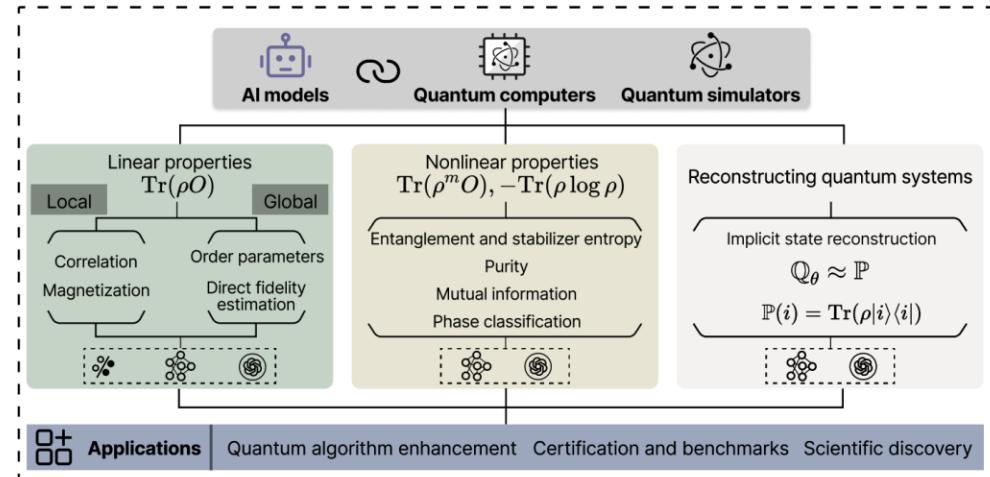
Conclusion & Outlook

Conclusion & Outlook

Q1: Any provably efficient learning surrogate beyond PAC learning?

Q2: More applications of classical learning surrogates?

Q3: Any advanced classical learning surrogates beyond mean-value estimation?



Artificial intelligence for representing and characterizing quantum systems

Yuxuan Du¹, Yan Zhu², Yuan-Hang Zhang³, Min-Hsiu Hsieh⁴, Patrick Rebentrost^{5,6}, Weibo Gao^{7,5}, Ya-Dong Wu^{8,*}, Jens Eisert^{9,10}, Giulio Chiribella^{11,12}, Dacheng Tao¹, and Barry C. Sanders¹³

¹College of Computing and Data Science, Nanyang Technological University, Singapore 639798, Singapore

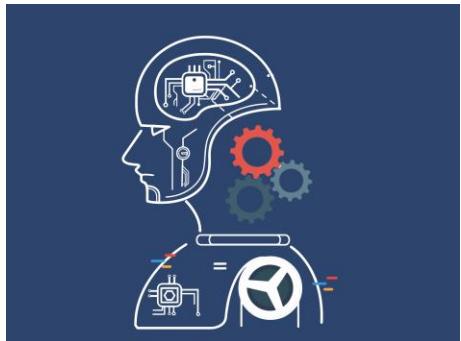
²QICI Quantum Information and Computation Initiative, Department of Computer Science,
The University of Hong Kong, Pokfulam Road, Hong Kong

³Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA

⁴Hon Hai (Foxconn) Research Institute, Taipei, Taiwan

Thank You for Listening!

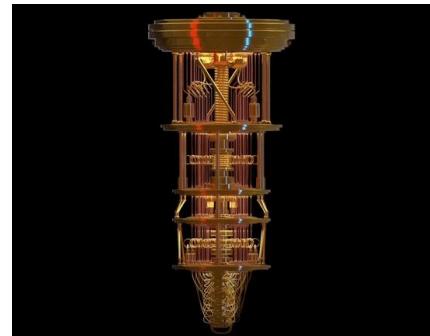
AI



SOTA AI Techniques

Quantum Computing

Email: yuxuan.du@ntu.edu.sg
Homepage: <https://yuxuan-du.github.io/>



QC

Personal website