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Quantum Gibbs Sampling

Local Hamiltonian:
H=H,+ . +H, Inverse temperature 3 = 1/T

N

Goal: Given (H, ), prepare Gibbs states e‘ﬁH/tr(e_ﬁH)

¢ Distribution over eigenstates




Application of Quantum Gibbs Sampling
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Application of Quantum Gibbs Sampling
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Quantum Chemistry
2D Hubbard model

Quantum Boltzmann Machine

 compute the gradient tr(Hpg)

« Sampling task

Optimization
Simulated annealing




Quantum Gibbs sampling

Goal: given (H, ), prepare Gibbs states

Today’s focus
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Correctness Efficiency
Converge in finite time Converge in poly(n) time




Outline

* Classical Metropolis Algorithm
* Quantum Metropolis Algorithm & Challenge
* Our algorithm

* Comparison Previous work



Classical Gibbs sampling

Classical Boltzmann machine

<i,j>€G

Goal: Generate the Gibbs state (distribution)
01011 ~ exp(—H(01011))

Classical Metropolis Algorithm 1953
Markov chain — Gibbs distribution




Classical Metropolis Algorithm 1953

Markov chain — Gibbs distribution

Accept

1) Choose arandom vertex and flip it
2) Flip acoin and choose Accept/Reject




Classical Metropolis Algorithm 1953

Markov chain — Gibbs distribution

Accept

1) Choose arandom vertex and flip it
2) Flip acoin and choose Accept/Reject

P(head) = min {1, exp(-fAy) }



Quantum Metropolis: challenges

Accept —
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» Challenge: Quantum state is unclonable
» Revert quantum state after measurement?

Ideas: Weak measurement is easier to revert!
Alternate Accept




Our ideas to revert measurement

1) Weak measurement
2) Alternate Accept

' d

T = 1/poly



Our ideas to revert measurement

1) Weak measurement
2) Alternate Accept

_— Accept

\ Reject

Detailed balance

Weak measurement Alternate Accept

T = 1/poly



Our algorithm in details

Do something random, then reject with some probabillity.
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Our algorithm in details

Do something random, then reject with |some probabillity.
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Weak Measurement
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Our algorithm in details

Do something random, then reject with |some probabillity.
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Trace out the last 3 registers

Our algorithm in details Refr:%mstates
ity.

Do something random, then reject with some prob
tate is close to the accept case
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Try rewinding
W |EE')|0) = |EE") (\/1 —72fgr |0) + T/ fEE |1)) by performing inverse operations




Our algorithm in details

Do something random, then reject with some probabillity.
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Comparison to existing work

» Revert quantum state after measurement?
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Comparison to existing work

[TOV+11]

Marriot-Watrous rewinding

Metropolis-type,
errors in proof

Boosted + Shift-invariant QPE does
not exist. [CKBG23]




Comparison to existing work

[TOV+11] Marriot-Watrous rewinding Metropolis-type,
errors in proof

[CKBG23,DLL24] Davies generator + Operator provably-correct,

Fourier transform differ from Metropolis
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Comparison to existing work

[TOV+11]

Marriot-Watrous rewinding

Metropolis-type,
errors in proof

[CKBG23,DLL24]

Davies generator + Operator
Fourier transform

provably-correct,
differ from Metropolis

Our work [JI24]

Weak measurement +
Alternate accept

conceptually-simple and
provably correct

: Accept
Reject

Make it easier to generalize classical
techniques to quantum Gibbs sampling

Alternate Accept




Comparison to existing work

[TOV+11] Marriot-Watrous rewinding Metropolis-type,
errors in proof

[CKBG23,DLL24] Davies generator + Operator provably-correct,

Fourier transform differ from Metropolis
Our work [JI24] Weak measurement + conceptually-simple and

Alternate accept provably correct
[DZPL25,HW25,HP | ... System bath interactions... conceptually simple and
B25, LA25... ] provably correct

H.(t) = H + Hg + af(t) (A3®BE+ATS®BE).



In summary....

Future direction

Most existing work

O

Correctness
Converge in finite timeg

Efficiency
Converge in poly(n) time




Q1: When quantum Gibbs sampling* is efficient?

ﬁ Low-temp
Q 2D Hamiltonian
[
Quantum Boltzmann

[BC25] machine

1D Hamiltonian [RF24]

Any constant [3 2D Hamiltonian

small 3
D




Q2: When estimating tr(0Opg) is efficient?

e [?] Design an algorithm that requiring tr(Op;) — tr(Op[;)

might be much easier than requiring p; = pg



Q2: When estimating tr(0Opg) is efficient?

e [?] Design an algorithm that requiring tr(Op;) — tr(Op[g)

might be much easier than requiring p; = pg

* Get effective independent sample of pg with a time smaller than £,,;,
[incoming work, IPAM workshop at UCLA, 2026.1.12-202.1.16]

New Frontiers in Quantum Algorithms for Open Quantum Systems

[JI24] might make it easier to generalize classical techniques to
quantum Gibbs sampling

Thanks for listening. Questions ?



Appendix
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