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Quantum Gibbs Sampling

Goal:Given H, 𝛽 , prepare Gibbs states

Local Hamiltonian:
𝐻 = 𝐻1 + … + 𝐻𝑚

Inverse temperature β = 1/𝑇

𝑒−𝛽𝐻/tr(𝑒−𝛽𝐻)

❖ Distribution over eigenstates



Application of Quantum Gibbs Sampling

Quantum Boltzmann Machine

• Sampling from the Gibbs state

• compute the gradient tr(H𝜌𝛽) 

𝜌𝛽 ≔ 𝑒−𝛽𝐻/tr(𝑒−𝛽𝐻)



Application of Quantum Gibbs Sampling

Optimization

Simulated annealing

Quantum Boltzmann Machine

• compute the gradient tr(H𝜌𝛽)

• Sampling task

Quantum Chemistry

2D Hubbard model 

𝜌𝛽 ≔ 𝑒−𝛽𝐻/tr(𝑒−𝛽𝐻)



Goal: given H, 𝛽 , prepare Gibbs states

Correctness

Converge in finite time

Efficiency

Converge in poly(n) time

Quantum Gibbs sampling

Today’s focus



Outline

• Classical Metropolis Algorithm

• Quantum Metropolis Algorithm & Challenge

• Our algorithm

• Comparison Previous work



Classical Gibbs sampling

Classical Boltzmann machine

𝐻 = ෍

<𝑖,𝑗>∈𝐺

𝑤𝑖𝑗 𝑍𝑖𝑍𝑗

Goal: Generate the Gibbs state (distribution)
01011 ∼ exp(−𝐻(01011))

Classical Metropolis Algorithm 1953

Markov chain Gibbs distribution



Markov chain Gibbs distribution

10
Accept

Reject

Classical Metropolis Algorithm 1953

1) Choose a random vertex and flip it
2) Flip a coin and choose Accept/Reject



Accept

Reject

0 1

Markov chain Gibbs distribution

Classical Metropolis Algorithm 1953

1) Choose a random vertex and flip it
2) Flip a coin and choose Accept/Reject

P(head) = min {1, exp(-𝛽Δ𝐻) }



➢ Challenge: Quantum state is unclonable
➢ Revert quantum state after measurement?

Ideas: Weak measurement is easier to revert!
Alternate Accept

𝜓𝑥 𝜓𝑦
Reject

Accept

Quantum Metropolis: challenges



Our ideas to revert measurement

× 𝝉𝟐

𝜓𝑥 𝜓𝑦
Reject

Accept

Weak measurement

1) Weak measurement
2) Alternate Accept

𝜏 = 1/𝑝𝑜𝑙𝑦



𝜓𝑥 𝜓𝑦
Reject

Accept

Alternate Accept

Detailed balance

Weak measurement

𝜏 = 1/𝑝𝑜𝑙𝑦

× 𝝉𝟐

Our ideas to revert measurement
1) Weak measurement
2) Alternate Accept



Our algorithm in details
Do something random, then reject with some probability.

Arbitrary unitary

𝜙 …
Accept

Reject



Our algorithm in details

Weak Measurement

Arbitrary unitary

𝜙 …
Accept

Reject

Do something random, then reject with some probability.



Our algorithm in details

Weak Measurement

Arbitrary unitary

𝜙 …
Accept

Reject

Do something random, then reject with some probability.



Our algorithm in details

Try rewinding
by performing inverse operations

Trace out the last 3 registers
Refresh with 0 states

The state is close to the accept case
Do something random, then reject with some probability.



Our algorithm in details

Try rewinding
by performing inverse operations

Do something random, then reject with some probability.

Remark: We record the energy
information at each step



➢ Revert quantum state aftermeasurement?

Comparison to existing work

𝜓𝑥 𝜓𝑦
Reject

Accept



Comparison to existing work
[TOV+11] Marriot-Watrous rewinding Metropolis-type,

errors in proof



Comparison to existing work
[TOV+11] Marriot-Watrous rewinding Metropolis-type,

errors in proof

[CKBG23,DLL24] Davies generator + Operator
Fourier transform

provably-correct,
differ fromMetropolis



Make it easier to generalize classical
techniques to quantumGibbs sampling

[TOV+11] Marriot-Watrous rewinding Metropolis-type,
errors in proof

[CKBG23,DLL24] Davies generator + Operator
Fourier transform

provably-correct,
differ fromMetropolis

Our work [JI24] Weakmeasurement +
Alternate accept

conceptually-simple and
provably correct

Comparison to existing work



[TOV+11] Marriot-Watrous rewinding Metropolis-type,
errors in proof

[CKBG23,DLL24] Davies generator + Operator
Fourier transform

provably-correct,
differ fromMetropolis

Our work [JI24] Weakmeasurement +
Alternate accept

conceptually-simple and
provably correct

[DZPL25,HW25,HP
B25, LA25… ]

… System bath interactions… conceptually simple and
provably correct

Comparison to existing work

𝑠𝑦𝑠𝑡𝑒𝑚 𝑏𝑎𝑡ℎ



Correctness

Converge in finite time

Efficiency

Converge in poly(n) time

In summary….

Most existing work Future direction



Q1: When quantum Gibbs sampling* is efficient?

𝛽

𝐷

[BC25]
1D Hamiltonian
Any constant β

[RF24]
2D Hamiltonian
small β

Low-temp
2D Hamiltonian

Quantum Boltzmann
machine



• [?] Design an algorithm that requiring 𝑡𝑟 𝑂𝜌𝑡 → 𝑡𝑟 𝑂𝜌𝛽

might bemuch easier than requiring 𝜌𝑡 → 𝜌𝛽

Q2: When estimating 𝑡𝑟(𝑂𝜌𝛽) is efficient?



• [?] Design an algorithm that requiring 𝑡𝑟 𝑂𝜌𝑡 → 𝑡𝑟 𝑂𝜌𝛽

might bemuch easier than requiring 𝜌𝑡 → 𝜌𝛽

• Get effective independent sample of 𝜌𝛽 with a time smaller than 𝑡𝑚𝑖𝑥

[incoming work, IPAMworkshop at UCLA, 2026.1.12-202.1.16]

[JI24] might make it easier to generalize classical techniques to
quantumGibbs sampling

Thanks for listening. Questions ?

Q2: When estimating 𝑡𝑟(𝑂𝜌𝛽) is efficient?



Appendix


	Slide 1: Quantum Metropolis Sampling  via Weak Measurement
	Slide 2: Quantum Gibbs Sampling
	Slide 3: Application of Quantum Gibbs Sampling
	Slide 4: Application of Quantum Gibbs Sampling
	Slide 5
	Slide 6: Outline
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13: Our algorithm in details
	Slide 14: Our algorithm in details
	Slide 15: Our algorithm in details
	Slide 16: Our algorithm in details
	Slide 17: Our algorithm in details
	Slide 18: Comparison to existing work
	Slide 19: Comparison to existing work  
	Slide 20: Comparison to existing work
	Slide 21: Comparison to existing work
	Slide 22: Comparison to existing work
	Slide 23
	Slide 24: Q1: When quantum Gibbs sampling* is efficient?
	Slide 25: Q2: When estimating t r open paren cap O rho sub beta close paren  is efficient?
	Slide 26: Q2: When estimating t r open paren cap O rho sub beta close paren  is efficient?
	Slide 27

