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Problem For Hamiltonian H, given initial state |¢(0)), prepare the

normalized solution of imaginary-time Schrodinger equation

0; |¢(1)) = —H |¢(7)) with |¢p) = |¢(0))
= |p(@) =e ™ |¢p) / |le™™ |9}

T imaginary evolution time
(7)) normalized imaginary-time evolved state (ITE state)

|p) = (7)) imaginary-time evolution operator (ITE operator)



Imaginary-time evolution

Application

e Ground state preparation 1Y) o lim e ™| (0)) if |{(yYyo|p(0))] > 0
T—00

* Thermal state preparation [1] p = e~ ™H / Tr(e —TH )

» Open-system simulation [2]  e*t[p] = VpVT, V = lim (e _itHl/Ne_tHZ/N)N

N —o00
e Others:

* computing Hamiltonian-related properties [3]
* data classification [4], optimization [5]
* quantum mechanics [6], quantum field theory [7]

[1] Motta, Mario, et al. "Determining eigenstates and thermal states on a quantum computer using quantum imaginary time evolution." Nature Physics 16.2 (2020): 205-210.
[2] Kamakari, Hirsh, et al. "Digital quantum simulation of open quantum systems using quantum imaginary—time evolution." PRX quantum 3.1 (2022): 010320.

[3] Wang, Xiaoyang, et al. "Computing $n$-Time Correlation Functions without Ancilla Qubits." Physical Review Letters 135 (2025): 230602.

[4] Ye, Qi, et al. "Quantum automated learning with provable and explainable trainability." arXiv preprint arXiv:2502.05264 (2025).

[5] Wang, Xiaoyang, et al. "Imaginary Hamiltonian variational Ansatz for combinatorial optimization problems." Physical Review A 111.3 (2025): 032612.

[6] Wick, Gian-Carlo. "Properties of Bethe-Salpeter wave functions." Physical Review 96.4 (1954): 1124.

[7] Lancaster, Tom, and Stephen J. Blundell. Quantum field theory for the gifted amateur. OUP Oxford, 2014.



Existing works

Routine 1

Fix one |¢). Find a physical unitary U such that U|¢p) = |¢(7)).
1) (PQC scheme) find 6 such that U(6*) ~ U [1]

(2) (Manifold scheme) find V € SU(2™) such that V = U [2]
(3 (Trotter scheme)  compute {(tj,Aj)} such that ] i e it ~ U [3]

v' polynomial resource complexity in system size

v’ execute without failure

X one solution cannot be converted to the other that has unknown initial state

X unclear relation between T and precision, possibly an exponential dependency

[1] McArdle, Sam, et al. "Variational ansatz-based quantum simulation of imaginary time evolution." npj Quantum Information 5.1 (2019): 75.
[2] Gluza, Marek, et al. "Double-bracket quantum algorithms for quantum imaginary-time evolution." arXiv preprint arXiv:2412.04554 (2024).
[3] Motta, Mario, et al. "Determining eigenstates and thermal states on a quantum computer using quantum imaginary time evolution." Nature Physics 16.2 (2020): 205-210.



Existing works

Routine 2

Unknown |¢). Find a physical operation € such that £E(¢) = ¢(7) or FAILURE.

v' polynomial resource complexity in system size
v' theoretically analyzed; work for any initial state
X success probability decrease exponentially with T \

exponential decay problem
Short Conclusion

* For long imaginary evolution, algorithms are either
* heuristic or

* theoretically infeasible :> NEED ITE algorithm for 7 > 0
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* Aunitary U applies rotations with respect to its eigenspaces.

eigenphase: angle of the rotation |\
U =3 e"i|y;)(v;

_—

eigenvalue: amplitude of the rotation eigenbasis: basis of the rotation
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* Transformation of U in terms of function f: R — C can be described as

FO) =35 f(4;) ;)W)

eigenvalue: amplitude of the rotation eigenbasis: basis of the rotation

Quantum algorithms using unitaries deal with eigen-information procession.
* Extract the target eigenphase/value — Shor, HHL, QAE
* Amplify the target eigenphase/value — Hamiltonian simulation, Grover



Transformation of quantum data

Core Idea 1

Use quantum phase processing (QPP) [1], a QSP-based structure to simulate transformation

A H 1 HF—"—T1THHF 5w

1 Y-rotation

| U ur---U

P(U) _Q(U) b0 sati P’QdE@Le__ixéz'eix/Z]’
Q*(U) P*(U) ) T | onastesamer

P, Q has the same parity
[1] Wang, Youle, et al. "Quantum phase processing and its applications in estimating phase and entropies." Physical Review A 108.6 (2023): 062413.



Transformation of quantum data

Core Idea 1

Use quantum phase processing (QPP), a QSP-based structure to simulate transformation F

0) 4 H = H F—~ ——_H H HA oo
F)l9)

|$) U U'---U

IFU)|)I

How to simulate f(U)?

(1) Assume access to control — U

(2) Compute f’s Fourier approximation F

(3 Compute rotation angles for [J ] x
(4) Construct the QPP circuit

(5) Post-select the ancilla qubit




Transformation of quantum data

Core Idea 1

Use quantum phase processing (QPP) to simulate transformation

0) L H = H F—~ —1{ H H H& cocomeo
F)Ig)
IF)I)]

|$) U U'---U

For ITE problem, choose U = e/
F(x) = e™/e", then
output state =~ |¢ (7)) with success probability O(e‘ZT)

Naive choice raises exponential decay problem
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Core Idea 2

Choose an exponential transformation with adaptive normalization factor A. Consider function
(

ae™ N x e [-m A]
| f‘t,l (x)' X € ()v Tl']

where «, ¢, ; ensure approximation error decays super-polynomially with the degree of approximation.

F(Oor=e™|= F(x) = -

Lemmal Letr C > 7(A — |\g|) > 0. Under As-

sumptions (i,iv,v), the output state \5(7')) Jrom the ITE cir- Finding A E [lﬂol M,Ol + ’l'_l] outputs

cuit ijT A(U 1) is obtained with success probability lower . d ”
bounded by o*~v?e=2¢ — €. Moreover, the state fidelity be- |:> an approximate ITE state wit

tween the output state and the ITE state is approximately SUCCESS probability nearly lower
lower bounded as bounded by a CONSTANT 6(2 8_2)/2
(o(lo(T)) 21— O(a™ e ). (5)

Avoids the exponential decay problem
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1 € [120l, 140l + 771

Error of ITE state preparation: O (10_5)

Success probability = a?e~2y?

Assumptions without loss of generality @

i) eigenvalues of H is within [—1, 1], and ground-state energy A, is negative

iv) imaginary-time evolution is long i.e., T >> 0

v) the overlap between input state |¢(0)) and the ground state is non-zero ale 242 -

1072 i

Lemmal | Let C > 7(\ — [Ng|) = 0. Under As-
sumptions |(i,iv,v),| the output state |¢(7)) from the ITE cir- 10-4 -
cuit Vi (Upn) is obtained with success probability lower

bounded by o*~v?e=2¢ — €. Moreover, the state fidelity be-
tween the output state and the ITE state is approximately
lower bounded as

106 4 Comfort Region

=== Success Probability
|<§b(7‘)‘§b(7‘))| Z 1 — 0(03_16 ] eC)_ (5) me State Infidelity w.r.t ITE state

|Aq] Aol Aol +1/7

* Some modifications are not shown on arXiv and will be updated in the version 3 soon



Main results

Assumptions that are specific to this problem

vii) the overlap between input state |¢p(0)) and the ground state is at least O(poly(n_l))

viii) the gap A between the ground-state energy A, and the first-excited-state energy A, is not zero

ix) A satisfies ™ is at least O(poly(7))

Theorem 3  Under Assumptions (i,iii,iv,v,Vi,Vil,Viii,ix),| one
can prepare the ITE state |p(7T)) up to fidelity 1 —
O(L?*A? poly(t~1)), using the following cost:

- O(Lpoly(nt)) queries to controlled Pauli rotations, Main Result Approximates the target state to

_ O(poly(n)) copies of |6), po.lynomlally small errors 1n verse 1maginary time
using polynomially many elementary quantum gates

- O(L poly(r)) maximal query depth, and and a single ancilla qubit.

- one ancilla qubit initialized in the zero state,

where L is the number of Pauli terms and A = max|h;|.
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Methods Circuit depth Expected circuit runs Ancilla H in Pauli form?
Manifold-based, £ steps [23] O (Skn) 1 0 No
Grover-based [25] O(7) \ O(n) No
TE-based [26] O(1) \ 1 No
QSP-based [27, 28] O(7) \ 1 No
QSP-based with AN (Theorem 2) 5(7) 0(7_2) 1 No
QSP-based with AN |(Theorem 3) 6(L poly(7)) O(poly(n)) 1 Yes
/f k\
adaptive normalization holds for reasonable ground-state overlap

proves ITE state can be prepared in polynomial resource
in terms of evolution time

[23] Gluza, Marek, et al. "Double-bracket quantum algorithms for quantum imaginary-time evolution." arXiv preprint arXiv:2412.04554 (2024).

[25] Liu, Tong, Jin-Guo Liu, and Heng Fan. "Probabilistic nonunitary gate in imaginary time evolution." Quantum Information Processing 20.6 (2021): 204.

[26] Kosugi, Taichi, et al. "Imaginary-time evolution using forward and backward real-time evolution with a single ancilla: First-quantized eigensolver algorithm for quantum chemistry." Physical Review Research 4.3 (2022): 033121.
[27] Silva, Thais L., et al. "Fragmented imaginary-time evolution for early-stage quantum signal processors." Scientific Reports 13.1 (2023): 18258.

[28] Chan, Hans Hon Sang, David Mufioz Ramo, and Nathan Fitzpatrick. "Simulating non-unitary dynamics using quantum signal processing with unitary block encoding." arXiv preprint arXiv:2303.06161 (2023).

* This table is not shown on arXiv and will be updated in the version 3 soon
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Ground-state energy estimation ITE state preparation
of precision O(7~ 1) > of precision O (poly(r‘l))

o J - j

Why ITE state can be prepared in polynomial resource?
(1) Multi-qubit QSP circuits are independent of system size

(2) Exponential transformation can be approximated via super-polynomial Fourier convergence
(3 Assumption on reasonable ground state overlap (otherwise may not be scalable in system size)

[~ not scalable for directly applying to Gibbs state preparation @
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Application

* Ground state preparation and ground-state energy estimation
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* (1ven a non-degenerate Hamiltonian

H =3, 4[], with Ag < 2, < -
find

Ao > Ground-state energy estimation

|Yo) 2>  Ground-state preparation

» Common query model U(t) = etHt



Application to Ground-state problems

Lemma 4 Under Assumptions (iii, vi),

[(old(1))] > 7/Ve ™A + 42,

-

.

Ground-state

energy estimation
of precision O(7~ 1)

~

)

>

If T satisfies e™® = Q(poly(r)):

-

.

ITE state preparation
of precision O (poly(r‘l))

~

 ITE state converges to the
ground state as T —

* The rate of convergence is
at least polynomial 1f

e™ = Q(poly(7))

Moreover, the lower bound is tight for some Hamiltonians.

)

—

-

.

~
Ground-state preparation
of precision O (poly(r‘l))
J

How to find such 7 ?



Application to Ground-state problems

 ITE state converges to the

Lemma 4 Under Assumptions (iii, vi),
ground state as T —

> —27AA 2 * The rate of convergence 1s
[(Yolo(T))] = 7/ \/F T at least polynomial 1f

TA _
Moreover, the lower bound is tight for some Hamiltonians. €= Q(poly(r))

Problem to be solved For Hamiltonian H, find

1. 7> 0s.t. e™ = Q(poly(r)) (ITE state ~ ground state)
2. L E [|Aol, |2l + T71] (efficient ITE state preparation)

3. E, an estimation of ITE state’s expectation value w.r.t. H

(ground-state energy estimation)



Our work

Expectation value of circuit wrt. H

AN

oy,

N) = (| frA(Un)" H fr 2 (Ug)|o)
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Algorithm Sketch

1.

Start with a guess time t, and a search interval [4;, A,]
Measure QPP circuits that prepare ITE states, which will
give an estimation E; and the interval where A lies.

If search interval is small enough and the estimation
sequence {E;}; converges, returnt, A, E_;

Otherwise, update guess time, search interval, and go back
to Step 1.

Algorithm 1: Ground state preparation and energy
estimation via ITE

1
2
3
4
5

e x>

11
12
13

14

15

Input : Hamiltonian H, initial state |¢), step size At, lower
bound B, a boolean function & for testing
convergence

Output: 7, A, IY in Problem 1

Guess t > 0;

Eg+0,i+ 0

M= 0,0 Emax{A: |w(A)|>B};

while A\, — \; >t ' or X({ E; }.) = False do

Measurement shots # < 8LA*t*B~%;

0 (A —A)/3, At — N+ 0, A — A — 6

Estimate w( A\ ), w(Ar);

r 4 (W(him) — w(Ar)) fw(Ar)

if [r — (e*™® —1)| > 771 (e + 1) then

E; « selected samples that estimate w(A;);
‘ [)\ia )\1] — [)\hn.: )\1-];
else
E; + selected samples that estimate
w()\hn) :W(AT-);
\‘ [At; A'r] — [Ala /\'rm];

|ttt AL it

return 7 + £, A\, E;;




Our work

Theorem 6 Suppose Assumptions (i,ii,v,vi,vii,viii,x) hold.
Algorithm 1 returns a time T that satisfies Assumption (ix),
an estimate X € [|Ao|,|Xo| + 77|, and an estimate of
Ao within precision O(B*y_lfr_l), with failure probability
O(e~ " log 7). Moreover, there are at most O(LlogT) dis-
tinct circuit constructed in Algorithm 1, and each circuit takes

art most.:

where L is the number of Pauli terms and A = max|h;|.

O(T) queries to controlled-Uy and its inverse,

O(1) query depth of Uy,
1 ancilla qubit, and

@, (LA2 B2 73) measurement shots,

Algorithm Sketch

1.

Start with a guess time 7, and a search interval [1;, 1, ]

2. Measure QPP circuits that prepare ITE states, which will

give an estimation E; and the location where A lies.

If search interval is small enough and the estimation
sequence {E;}; converges, return 7, A,, E_;

Otherwise, update guess time, search interval, and go back
to Step 1.

Algorithm 1: Ground state preparation and energy
estimation via ITE
Input : Hamiltonian H, initial state |¢), step size At, lower
bound B, a boolean function & for testing
convergence
Output: 7, A, IY in Problem 1
1 Guesst > 0;
2 Eg 0,1+ 0;
3N 0,0 Emax{\: [w(\)|>B};
4 while \, — \; >t ' or X({ E; }.) = False do
5 Measurement shots # + 8LA*t°B?;
d— (A = N)/3. M — M+, A = A — 6,
Estimate w( Ay, ), w(Ar);
r 4 (W(him) — w(Ar)) fw(Ar)
9 if [r — (e'° —1)] > 771(e'™® + 1) then
10 E; « selected samples that estimate w(A;);
11 ‘ [Ar; Ar] < [Aims Arls

e~

12 else

13 E; + selected samples that estimate
w()\l'm.) 7w(AT'):

14 [/\t; A'r] — [Ala /\'rm];

15 | t+—t+ At i+ 14+1;
16 return T + t, A, F:;
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Methods Query depth Expected circuit runs Ancilla

Conventional QPE [31] Q(’}’_lT) O(’Y_QT) Q(log(')’_l’r))

Semi-classical QPE [32, 33] Q(y 1) O(y%7) 1
QET-based [34] (state preparation) Q(y~'7) O (v *7) 3
QET-based [34] (energy estimation) Qv '7) O (v7%7) 1
HT-based [35] (energy estimation) Q ((1 — 42)/ 2 17‘) O (v~*7) 1

ITE-based [3, 7] \ \ 0
ITE-based (Theorem 6) O(r) Q(v*7°) 1

Obtain shorter circuit depth as a trade-off of more queries to Uy

[3] Motta, Mario, et al. "Determining eigenstates and thermal states on a quantum computer using quantum imaginary time evolution." Nature Physics 16.2 (2020): 205-210.

[7] McArdle, Sam, et al. "Variational ansatz-based quantum simulation of imaginary time evolution." npj Quantum Information 5.1 (2019): 75.

[31] Kitaev, A. Yu. "Quantum measurements and the Abelian stabilizer problem." arXiv preprint quant-ph/9511026 (1995).

[32] Griffiths, Robert B., and Chi-Sheng Niu. "Semiclassical Fourier transform for quantum computation." Physical Review Letters 76.17 (1996): 3228.

[34] Dong, Yulong, Lin Lin, and Yu Tong. "Ground-state preparation and energy estimation on early fault-tolerant quantum computers via quantum eigenvalue transformation of unitary matrices." PRX Quantum 3.4 (2022): 040305.
[35] Ding, Zhiyan, and Lin Lin. "Even shorter quantum circuit for phase estimation on early fault-tolerant quantum computers with applications to ground-state energy estimation." PRX Quantum 4.2 (2023): 020331.

* This table is not shown on arXiv and will be updated in the version 3 soon



Experiments

Hamiltonian Type Antiferromagnetic Heisenberg Model (AFM) H « Z}LO(X 2T (T AV

(a)

Energy
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—1I)

b ® E; from Algorithm 1
!‘ —-==- Linear fit
o
.\\.\
o,
o
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Resource Cost (per Shots Number)

Complete tasks with imaginary-time evolution time up to 50
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* The first ITE algorithm proved to have
polynomial resource dependence 1n evolution time

* Applying ITE to ground-state problems can reduce circuit depth

e Potential caveats
* Does not consider classical machine error
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Research Group Preprint Code Repo
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