

Quantum Imaginary-Time Evolution

Prepare ITE state with polynomial resources in time

Preprint
(v3 updated soon)

信息枢纽
INFORMATION HUB
人工智能学域
ARTIFICIAL INTELLIGENCE

Lei Zhang, Jizhe Lai, Xian Wu, Xin Wang

Dec 10th , 2025

Imaginary-time evolution (ITE)

Problem For Hamiltonian H , given initial state $|\phi(0)\rangle$, prepare the normalized solution of imaginary-time Schrödinger equation

$$\begin{aligned}\partial_\tau |\phi(\tau)\rangle &= -H |\phi(\tau)\rangle \text{ with } |\phi\rangle = |\phi(0)\rangle \\ \Rightarrow |\phi(\tau)\rangle &= e^{-\tau H} |\phi\rangle / \|e^{-\tau H} |\phi\rangle\|\end{aligned}$$

τ

imaginary evolution time

$|\phi(\tau)\rangle$

normalized imaginary-time evolved state (ITE state)

$|\phi\rangle \rightarrow |\phi(\tau)\rangle$

imaginary-time evolution operator (ITE operator)

Imaginary-time evolution

Application

- Ground state preparation $|\psi_0\rangle \propto \lim_{\tau \rightarrow \infty} \mathbf{e}^{-\tau \mathbf{H}} |\phi(0)\rangle$ if $|\langle \psi_0 | \phi(0) \rangle| > 0$
- Thermal state preparation [1] $\rho = \mathbf{e}^{-\tau \mathbf{H}} / \text{Tr}(e^{-\tau H})$
- Open-system simulation [2] $e^{\mathcal{L}t}[\rho] = V \rho V^\dagger, V = \lim_{N \rightarrow \infty} (e^{-itH_1/N} \mathbf{e}^{-tH_2/N})^N$
- Others:
 - computing Hamiltonian-related properties [3]
 - data classification [4], optimization [5]
 - quantum mechanics [6], quantum field theory [7]

[1] Motta, Mario, et al. "Determining eigenstates and thermal states on a quantum computer using quantum imaginary time evolution." *Nature Physics* 16.2 (2020): 205-210.

[2] Kamakari, Hirsh, et al. "Digital quantum simulation of open quantum systems using quantum imaginary-time evolution." *PRX quantum* 3.1 (2022): 010320.

[3] Wang, Xiaoyang, et al. "Computing \$n\$-Time Correlation Functions without Ancilla Qubits." *Physical Review Letters* 135 (2025): 230602.

[4] Ye, Qi, et al. "Quantum automated learning with provable and explainable trainability." *arXiv preprint arXiv:2502.05264* (2025).

[5] Wang, Xiaoyang, et al. "Imaginary Hamiltonian variational Ansatz for combinatorial optimization problems." *Physical Review A* 111.3 (2025): 032612.

[6] Wick, Gian-Carlo. "Properties of Bethe-Salpeter wave functions." *Physical Review* 96.4 (1954): 1124.

[7] Lancaster, Tom, and Stephen J. Blundell. *Quantum field theory for the gifted amateur*. OUP Oxford, 2014.

Existing works

Routine 1

Fix one $|\phi\rangle$. Find a physical unitary U such that $U|\phi\rangle = |\phi(\tau)\rangle$.

- ① (PQC scheme) find θ^* such that $U(\theta^*) \approx U$ [1]
- ② (Manifold scheme) find $V \in \mathrm{SU}(2^n)$ such that $V \approx U$ [2]
- ③ (Trotter scheme) compute $\{(t_j, A_j)\}$ such that $\prod_j e^{-iA_j t_j} \approx U$ [3]

- ✓ polynomial resource complexity in system size
- ✓ execute without failure
- ✗ one solution cannot be converted to the other that has unknown initial state
- ✗ unclear relation between τ and precision, possibly an exponential dependency

[1] McArdle, Sam, et al. "Variational ansatz-based quantum simulation of imaginary time evolution." *npj Quantum Information* 5.1 (2019): 75.

[2] Gluza, Marek, et al. "Double-bracket quantum algorithms for quantum imaginary-time evolution." *arXiv preprint arXiv:2412.04554* (2024).

[3] Motta, Mario, et al. "Determining eigenstates and thermal states on a quantum computer using quantum imaginary time evolution." *Nature Physics* 16.2 (2020): 205-210.

Existing works

Routine 2

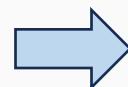
Unknown $|\phi\rangle$. Find a physical operation \mathcal{E} such that $\mathcal{E}(\phi) = \phi(\tau)$ or FAILURE.

- ✓ polynomial resource complexity in system size
- ✓ theoretically analyzed; work for any initial state
- ✗ success probability decrease exponentially with τ

exponential decay problem

Short Conclusion

- For long imaginary evolution, algorithms are either
 - heuristic or
 - theoretically infeasible



NEED ITE algorithm for $\tau \gg 0$

Transformation of quantum data

- A unitary U applies rotations with respect to its eigenspaces.

eigenphase: angle of the rotation

$$U = \sum_j e^{i\lambda_j} |\psi_j\rangle\langle\psi_j|$$

eigenvalue: amplitude of the rotation

eigenbasis: basis of the rotation

Transformation of quantum data

- Transformation of U in terms of function $f: \mathbb{R} \rightarrow \mathbb{C}$ can be described as

eigenphase: angle of the rotation

$$f(U) = \sum_j f(\lambda_j) |\psi_j\rangle\langle\psi_j|$$

eigenvalue: amplitude of the rotation

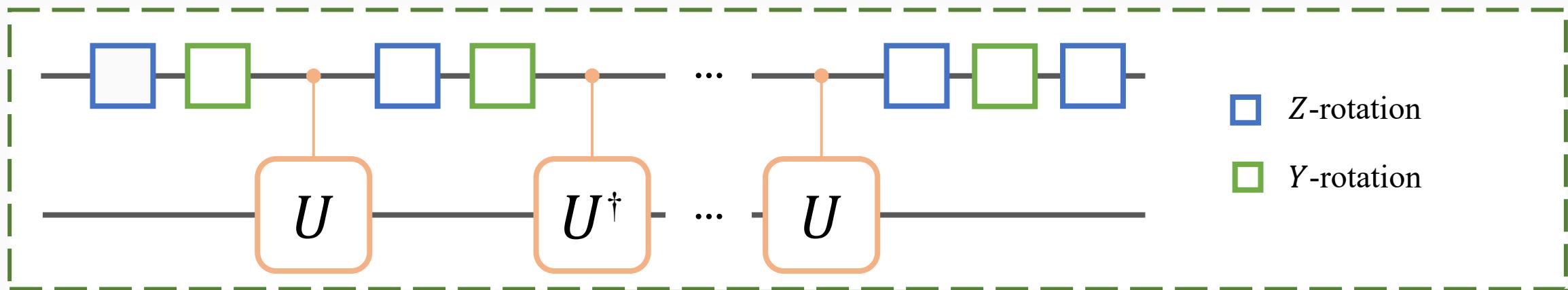
eigenbasis: basis of the rotation

- Quantum algorithms using unitaries deal with eigen-information procession.
 - Extract the target eigenphase/value – Shor, HHL, QAE
 - Amplify the target eigenphase/value – Hamiltonian simulation, Grover

Transformation of quantum data

Core Idea 1

Use quantum phase processing (QPP) [1], a QSP-based structure to simulate transformation



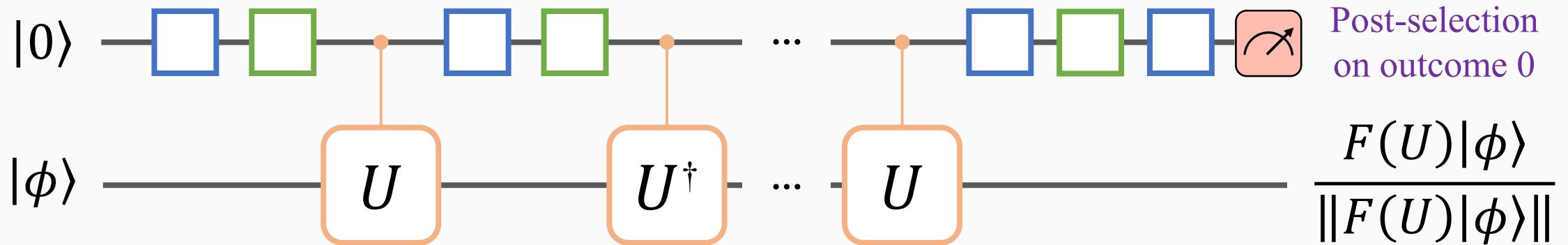
$$\begin{pmatrix} P(U) & -Q(U) \\ Q^*(U) & P^*(U) \end{pmatrix}$$

P, Q satisfy $\begin{cases} P, Q \in \mathbb{C}[e^{-ix/2}, e^{ix/2}], \\ \deg P = \deg Q \\ P, Q \text{ has the same parity} \end{cases}$

Transformation of quantum data

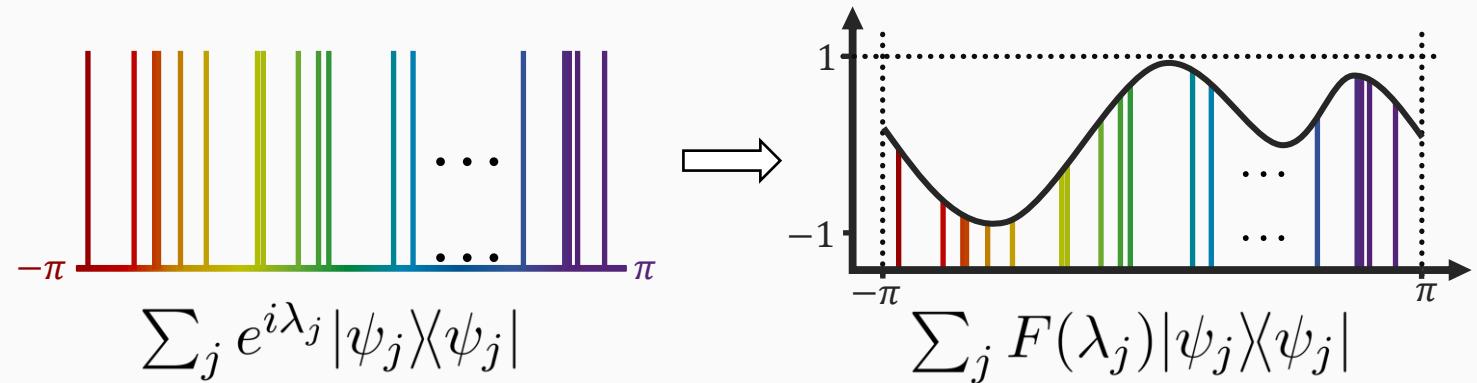
Core Idea 1

Use quantum phase processing (QPP), a QSP-based structure to simulate transformation F



How to simulate $f(U)$?

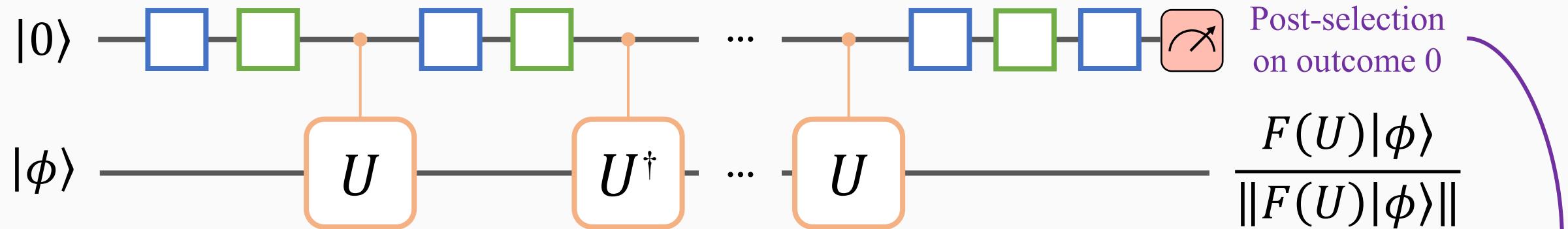
- ① Assume access to control – U
- ② Compute f 's Fourier approximation F
- ③ Compute rotation angles for \square \square
- ④ Construct the QPP circuit
- ⑤ Post-select the ancilla qubit



Transformation of quantum data

Core Idea 1

Use quantum phase processing (QPP) to simulate transformation



For ITE problem, choose $U = e^{-iH}$

$$F(x) \approx e^{\tau x} / e^\tau, \text{ then}$$

output state $\approx |\phi(\tau)\rangle$ with success probability $\mathcal{O}(e^{-2\tau})$

Naïve choice raises exponential decay problem

Adaptive normalization

Core Idea 2

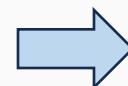
Choose an exponential transformation with adaptive normalization factor λ . Consider function

$$\del{F(x) \approx e^{\tau x}} \Rightarrow F(x) \approx \begin{cases} \alpha e^{\tau(x-\lambda)}, & x \in [-\pi, \lambda] \\ \xi_{\tau, \lambda}(x), & x \in (\lambda, \pi] \end{cases}$$

where $\alpha, \xi_{\tau, \lambda}$ ensure approximation error decays *super-polynomially* with the degree of approximation.

Lemma 1 Let $C \geq \tau(\lambda - |\lambda_0|) \geq 0$. Under Assumptions (i,iv,v), the output state $|\tilde{\phi}(\tau)\rangle$ from the ITE circuit $V_{f_{\tau, \lambda}}^\epsilon(U_H)$ is obtained with success probability lower bounded by $\alpha^2 \gamma^2 e^{-2C} - \epsilon$. Moreover, the state fidelity between the output state and the ITE state is approximately lower bounded as

$$|\langle \phi(\tau) | \tilde{\phi}(\tau) \rangle| \gtrsim 1 - \mathcal{O}(\alpha^{-1} \epsilon \cdot e^C). \quad (5)$$



Finding $\lambda \in [|\lambda_0|, |\lambda_0| + \tau^{-1}]$ outputs an approximated ITE state with success probability nearly lower bounded by a CONSTANT $\alpha^2 e^{-2\gamma^2}$

Avoids the exponential decay problem

Main results

Assumptions without loss of generality

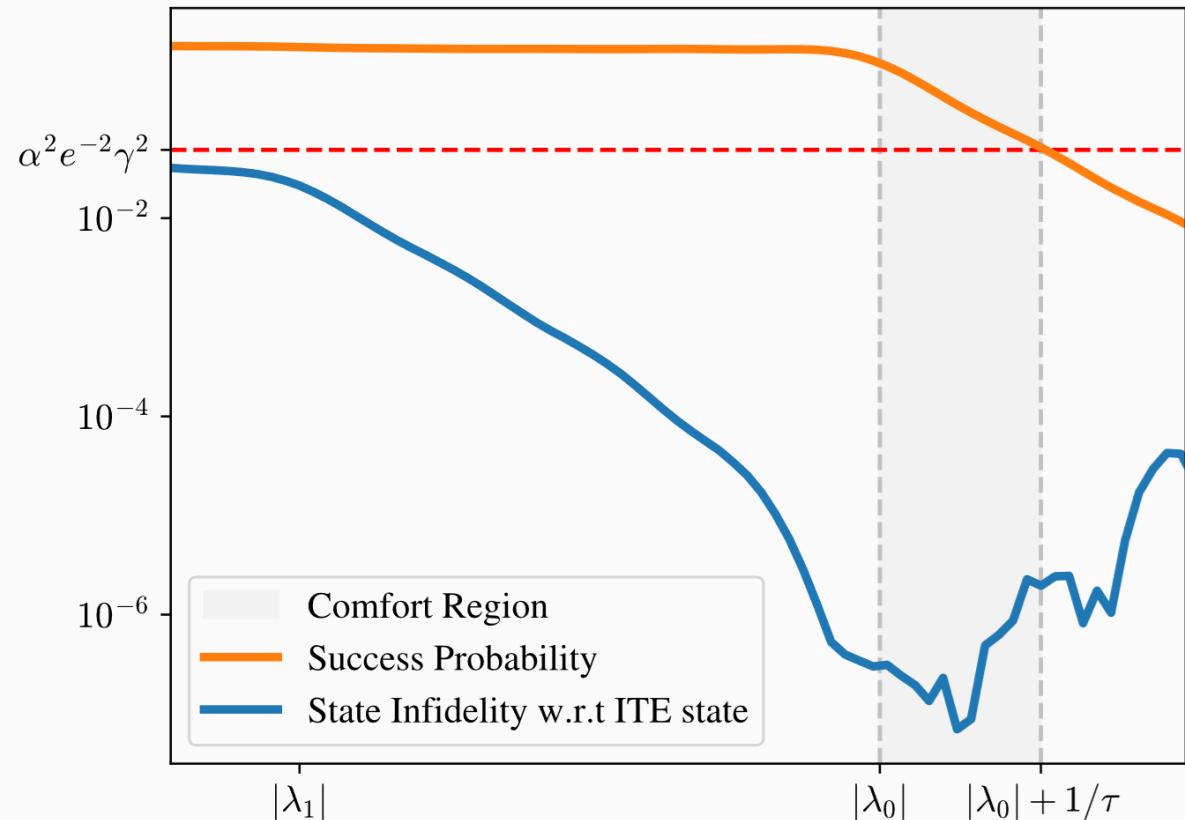
- i) eigenvalues of H is within $[-1, 1]$, and ground-state energy λ_0 is negative
- iv) imaginary-time evolution is long i.e., $\tau \gg 0$
- v) the overlap between input state $|\phi(0)\rangle$ and the ground state is non-zero

Lemma 1 Let $C \geq \tau(\lambda - |\lambda_0|) \geq 0$. Under Assumptions (i,iv,v), the output state $|\tilde{\phi}(\tau)\rangle$ from the ITE circuit $V_{f_{\tau,\lambda}}^{\epsilon}(U_H)$ is obtained with success probability lower bounded by $\alpha^2\gamma^2e^{-2C} - \epsilon$. Moreover, the state fidelity between the output state and the ITE state is approximately lower bounded as

$$|\langle\phi(\tau)|\tilde{\phi}(\tau)\rangle| \gtrsim 1 - \mathcal{O}(\alpha^{-1}\epsilon \cdot e^C). \quad (5)$$

$$\lambda \in [|\lambda_0|, |\lambda_0| + \tau^{-1}]$$

Error of ITE state preparation: $\mathcal{O}(10^{-5})$
 Success probability $\gtrsim \alpha^2 e^{-2\gamma^2}$



Main results

Assumptions that are specific to this problem

- vii) the overlap between input state $|\phi(0)\rangle$ and the ground state is at least $\mathcal{O}(\text{poly}(n^{-1}))$
- viii) the gap Δ between the ground-state energy λ_0 and the first-excited-state energy λ_1 is not zero
- ix) Δ satisfies $e^{\tau\Delta}$ is at least $\mathcal{O}(\text{poly}(\tau))$

Theorem 3 *Under Assumptions (i,iii,iv,v,vi,vii,viii,ix), one can prepare the ITE state $|\phi(\tau)\rangle$ up to fidelity $1 - \mathcal{O}(L^2\Lambda^2 \text{poly}(\tau^{-1}))$, using the following cost:*

- $\tilde{\mathcal{O}}(L \text{poly}(n\tau))$ queries to controlled Pauli rotations,
- $\mathcal{O}(\text{poly}(n))$ copies of $|\phi\rangle$,
- $\tilde{\mathcal{O}}(L \text{poly}(\tau))$ maximal query depth, and
- one ancilla qubit initialized in the zero state,

where L is the number of Pauli terms and $\Lambda = \max_j |h_j|$.

Main Result Approximates the target state to **polynomially small errors in inverse imaginary time** using polynomially many elementary quantum gates and a single ancilla qubit.

Comparison with theoretical works

Methods	Circuit depth	Expected circuit runs	Ancilla	H in Pauli form?
Manifold-based, k steps [23]	$\mathcal{O}(3^k n)$	1	0	No
Grover-based [25]	$\mathcal{O}(\tau)$	\	$\mathcal{O}(n)$	No
TE-based [26]	$\mathcal{O}(\tau)$	\	1	No
QSP-based [27, 28]	$\tilde{\mathcal{O}}(\tau)$	\	1	No
QSP-based with AN (Theorem 2)	$\tilde{\mathcal{O}}(\tau)$	$\mathcal{O}(\gamma^{-2})$	1	No
QSP-based with AN (Theorem 3)	$\tilde{\mathcal{O}}(L \text{poly}(\tau))$	$\mathcal{O}(\text{poly}(n))$	1	Yes

adaptive normalization

holds for reasonable ground-state overlap

proves **ITE state can be prepared in polynomial resource**
in terms of evolution time

[23] Gluza, Marek, et al. "Double-bracket quantum algorithms for quantum imaginary-time evolution." *arXiv preprint arXiv:2412.04554* (2024).

[25] Liu, Tong, Jin-Guo Liu, and Heng Fan. "Probabilistic nonunitary gate in imaginary time evolution." *Quantum Information Processing* 20.6 (2021): 204.

[26] Kosugi, Taichi, et al. "Imaginary-time evolution using forward and backward real-time evolution with a single ancilla: First-quantized eigensolver algorithm for quantum chemistry." *Physical Review Research* 4.3 (2022): 033121.

[27] Silva, Thais L., et al. "Fragmented imaginary-time evolution for early-stage quantum signal processors." *Scientific Reports* 13.1 (2023): 18258.

[28] Chan, Hans Hon Sang, David Muñoz Ramo, and Nathan Fitzpatrick. "Simulating non-unitary dynamics using quantum signal processing with unitary block encoding." *arXiv preprint arXiv:2303.06161* (2023).

* This table is not shown on arXiv and will be updated in the version 3 soon

Summary for the ITE part

Ground-state energy estimation
of precision $\mathcal{O}(\tau^{-1})$

ITE state preparation
of precision $\mathcal{O}(\text{poly}(\tau^{-1}))$

Why ITE state can be prepared in polynomial resource?

- ① Multi-qubit QSP circuits are independent of system size
- ② Exponential transformation can be approximated via super-polynomial Fourier convergence
- ③ Assumption on reasonable ground state overlap (otherwise may not be scalable in system size)
↳ not scalable for directly applying to Gibbs state preparation ☺

Application

- Ground state preparation and ground-state energy estimation

Application to Ground-state problems

- Given a non-degenerate Hamiltonian

$$H = \sum_j \lambda_j |\psi_j\rangle\langle\psi_j|, \text{ with } \lambda_0 < \lambda_1 \leq \dots$$

find

$\lambda_0 \rightarrow$ Ground-state energy estimation

$|\psi_0\rangle \rightarrow$ Ground-state preparation

- Common query model $U(t) = e^{iHt}$

Application to Ground-state problems

Lemma 4 *Under Assumptions (iii, vi),*

$$|\langle \psi_0 | \phi(\tau) \rangle| \geq \gamma / \sqrt{e^{-2\tau\Delta} + \gamma^2}.$$

Moreover, the lower bound is tight for some Hamiltonians.

- ITE state converges to the ground state as $\tau \rightarrow \infty$
- The rate of convergence is at least polynomial if $e^{\tau\Delta} = \Omega(\text{poly}(\tau))$

If τ satisfies $e^{\tau\Delta} = \Omega(\text{poly}(\tau))$:

Ground-state
energy estimation
of precision $\mathcal{O}(\tau^{-1})$

ITE state preparation
of precision $\mathcal{O}(\text{poly}(\tau^{-1}))$

Ground-state preparation
of precision $\mathcal{O}(\text{poly}(\tau^{-1}))$

How to find such τ ?

Application to Ground-state problems

Lemma 4 *Under Assumptions (iii, vi),*

$$|\langle \psi_0 | \phi(\tau) \rangle| \geq \gamma / \sqrt{e^{-2\tau\Delta} + \gamma^2}.$$

Moreover, the lower bound is tight for some Hamiltonians.

- ITE state converges to the ground state as $\tau \rightarrow \infty$
- The rate of convergence is at least polynomial if $e^{\tau\Delta} = \Omega(\text{poly}(\tau))$

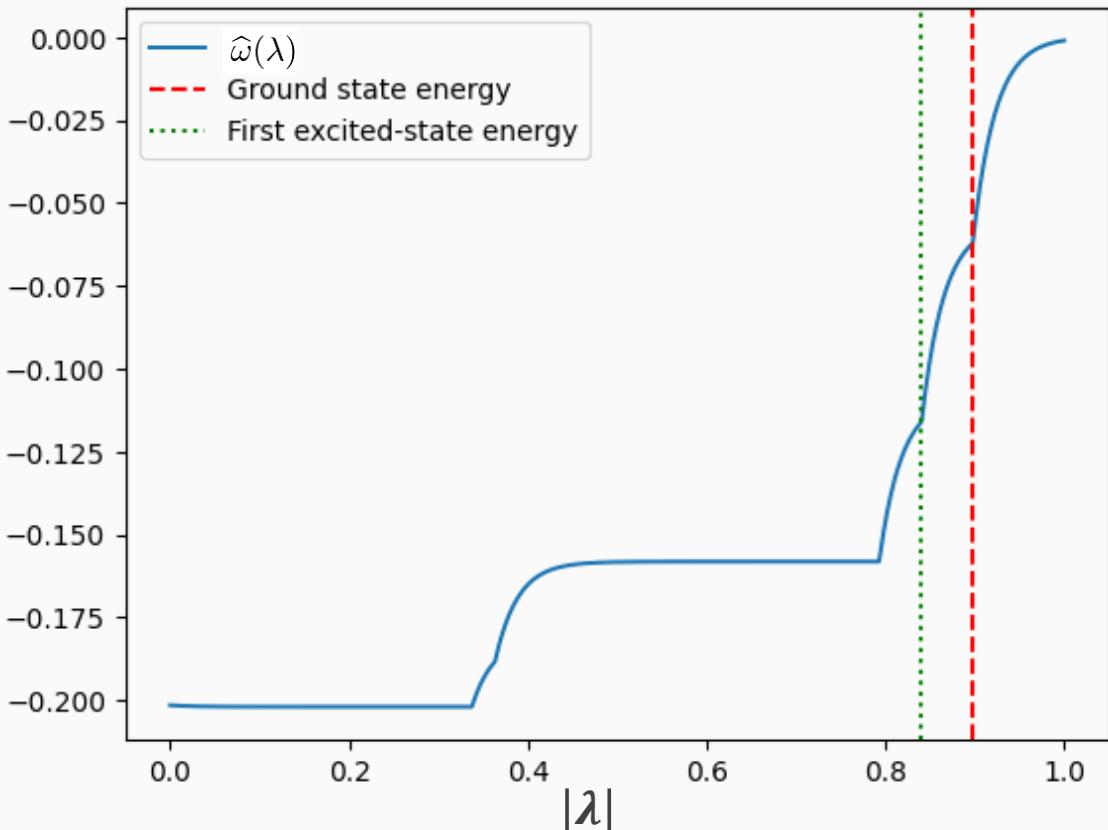
Problem to be solved For Hamiltonian H , find

1. $\tau \gg 0$ s.t. $e^{\tau\Delta} = \Omega(\text{poly}(\tau))$ (**ITE state \approx ground state**)
2. $\lambda \in [|\lambda_0|, |\lambda_0| + \tau^{-1}]$ (**efficient ITE state preparation**)
3. E , an estimation of ITE state's expectation value w.r.t. H
(ground-state energy estimation)

Our work

Expectation value of circuit wrt. H

$$\hat{\omega}(\lambda) = \langle \phi | f_{\tau, \lambda}(U_H)^\dagger H f_{\tau, \lambda}(U_H) | \phi \rangle$$



Algorithm Sketch

1. Start with a guess time t , and a search interval $[\lambda_l, \lambda_r]$
2. Measure QPP circuits that prepare ITE states, which will give an estimation E_i and the interval where λ_0 lies.
3. If search interval is small enough and the estimation sequence $\{E_i\}_i$ converges, return t, λ_r, E_{-1}
4. Otherwise, update guess time, search interval, and go back to Step 1.

Algorithm 1: Ground state preparation and energy estimation via ITE

Input : Hamiltonian H , initial state $|\phi\rangle$, step size Δt , lower bound B , a boolean function \mathcal{X} for testing convergence

Output: τ, λ, E in Problem 1

```

1 Guess  $t \gg 0$ ;
2  $E_0 \leftarrow 0, i \leftarrow 0$ ;
3  $\lambda_l \leftarrow 0, \lambda_r \xleftarrow{\sim} \max \{ \lambda : |\omega(\lambda)| > B \}$ ;
4 while  $\lambda_r - \lambda_l > t^{-1}$  or  $\mathcal{X}(\{E_i\}_i) = \text{False}$  do
5   Measurement shots #  $\leftarrow 8L\Lambda^{\frac{1}{2}}t^3B^{-2}$ ;
6    $\delta \leftarrow (\lambda_r - \lambda_l)/3, \lambda_{lm} \leftarrow \lambda_l + \delta, \lambda_{rm} \leftarrow \lambda_r - \delta$ ;
7   Estimate  $\omega(\lambda_{lm}), \omega(\lambda_r)$ ;
8    $r \leftarrow (\omega(\lambda_{lm}) - \omega(\lambda_r)) / \omega(\lambda_r)$ ;
9   if  $|r - (e^{4\tau\delta} - 1)| > \tau^{-1}(e^{4\tau\delta} + 1)$  then
10     $E_i \leftarrow$  selected samples that estimate  $\omega(\lambda_r)$ ;
11     $[\lambda_l, \lambda_r] \leftarrow [\lambda_{lm}, \lambda_r]$ ;
12  else
13     $E_i \leftarrow$  selected samples that estimate  $\omega(\lambda_{lm}), \omega(\lambda_r)$ ;
14     $[\lambda_l, \lambda_r] \leftarrow [\lambda_l, \lambda_{rm}]$ ;
15   $t \leftarrow t + \Delta t, i \leftarrow i + 1$ ;
16 return  $\tau \leftarrow t, \lambda_r, E_i$ ;

```

Our work

Theorem 6 Suppose Assumptions (i,ii,v,vi,vii,viii,x) hold. Algorithm 1 returns a time τ that satisfies Assumption (ix), an estimate $\lambda \in [|\lambda_0|, |\lambda_0| + \tau^{-1}]$, and an estimate of λ_0 within precision $\mathcal{O}(B\gamma^{-1}\tau^{-1})$, with failure probability $\mathcal{O}(e^{-\tau} \log \tau)$. Moreover, there are at most $\mathcal{O}(L \log \tau)$ distinct circuit constructed in Algorithm 1, and each circuit takes at most:

- $\mathcal{O}(\tau)$ queries to controlled- U_H and its inverse,
- $\mathcal{O}(\tau)$ query depth of U_H ,
- 1 ancilla qubit, and
- $\mathcal{O}(L\Lambda^2 B^{-2} \tau^3)$ measurement shots,

where L is the number of Pauli terms and $\Lambda = \max_j |h_j|$.

Algorithm Sketch

1. Start with a guess time τ , and a search interval $[\lambda_l, \lambda_r]$
2. Measure QPP circuits that prepare ITE states, which will give an estimation E_i and the location where λ_0 lies.
3. If search interval is small enough and the estimation sequence $\{E_i\}_i$ converges, return τ, λ_r, E_{-1}
4. Otherwise, update guess time, search interval, and go back to Step 1.

Algorithm 1: Ground state preparation and energy estimation via ITE

Input : Hamiltonian H , initial state $|\phi\rangle$, step size Δt , lower bound B , a boolean function \mathcal{X} for testing convergence

Output: τ, λ, E in Problem 1

```

1 Guess  $t \gg 0$ ;
2  $E_0 \leftarrow 0, i \leftarrow 0$ ;
3  $\lambda_l \leftarrow 0, \lambda_r \overset{\sim}{\leftarrow} \max \{ \lambda : |\omega(\lambda)| > B \}$ ;
4 while  $\lambda_r - \lambda_l > t^{-1}$  or  $\mathcal{X}(\{E_i\}_i) = \text{False}$  do
5   Measurement shots #  $\leftarrow 8L\Lambda^{\frac{1}{2}}t^3B^{-2}$ ;
6    $\delta \leftarrow (\lambda_r - \lambda_l)/3, \lambda_{lm} \leftarrow \lambda_l + \delta, \lambda_{rm} \leftarrow \lambda_r - \delta$ ;
7   Estimate  $\omega(\lambda_{lm}), \omega(\lambda_r)$ ;
8    $r \leftarrow (\omega(\lambda_{lm}) - \omega(\lambda_r)) / \omega(\lambda_r)$ ;
9   if  $|r - (e^{4\tau\delta} - 1)| > \tau^{-1}(e^{4\tau\delta} + 1)$  then
10     $E_i \leftarrow$  selected samples that estimate  $\omega(\lambda_r)$ ;
11     $[\lambda_l, \lambda_r] \leftarrow [\lambda_{lm}, \lambda_r]$ ;
12  else
13     $E_i \leftarrow$  selected samples that estimate
     $\omega(\lambda_{lm}), \omega(\lambda_r)$ ;
14     $[\lambda_l, \lambda_r] \leftarrow [\lambda_l, \lambda_{rm}]$ ;
15     $t \leftarrow t + \Delta t, i \leftarrow i + 1$ ;
16 return  $\tau \leftarrow t, \lambda_r, E_i$ ;

```

Comparison with existing works

Methods	Query depth	Expected circuit runs	Ancilla
Conventional QPE [31]	$\Omega(\gamma^{-1}\tau)$	$\mathcal{O}(\gamma^{-2}\tau)$	$\Omega(\log(\gamma^{-1}\tau))$
Semi-classical QPE [32, 33]	$\Omega(\gamma^{-3}\tau)$	$\mathcal{O}(\gamma^{-2}\tau)$	1
QET-based [34] (state preparation)	$\Omega(\gamma^{-1}\tau)$	$\tilde{\mathcal{O}}(\gamma^{-2}\tau)$	3
QET-based [34] (energy estimation)	$\Omega(\gamma^{-1}\tau)$	$\tilde{\mathcal{O}}(\gamma^{-2}\tau)$	1
HT-based [35] (energy estimation)	$\Omega((1 - \gamma^2)^{1/2}\gamma^{-1}\tau)$	$\tilde{\mathcal{O}}(\gamma^{-4}\tau)$	1
ITE-based [3, 7]	\	\	0
ITE-based (Theorem 6)	$\mathcal{O}(\tau)$	$\Omega(\gamma^{-4}\tau^3)$	1

Obtain shorter circuit depth as a trade-off of more queries to U_H

[3] Motta, Mario, et al. "Determining eigenstates and thermal states on a quantum computer using quantum imaginary time evolution." *Nature Physics* 16.2 (2020): 205-210.

[7] McArdle, Sam, et al. "Variational ansatz-based quantum simulation of imaginary time evolution." *npj Quantum Information* 5.1 (2019): 75.

[31] Kitaev, A. Yu. "Quantum measurements and the Abelian stabilizer problem." *arXiv preprint quant-ph/9511026* (1995).

[32] Griffiths, Robert B., and Chi-Sheng Niu. "Semiclassical Fourier transform for quantum computation." *Physical Review Letters* 76.17 (1996): 3228.

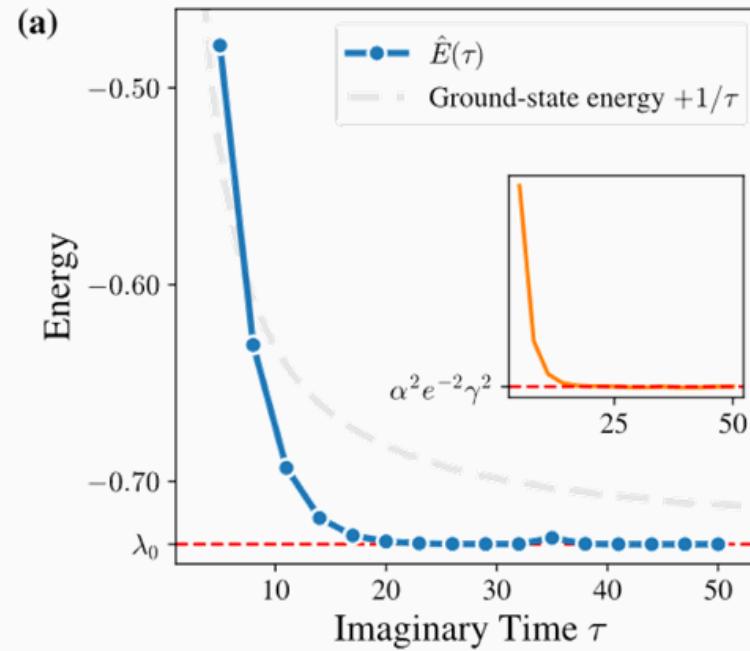
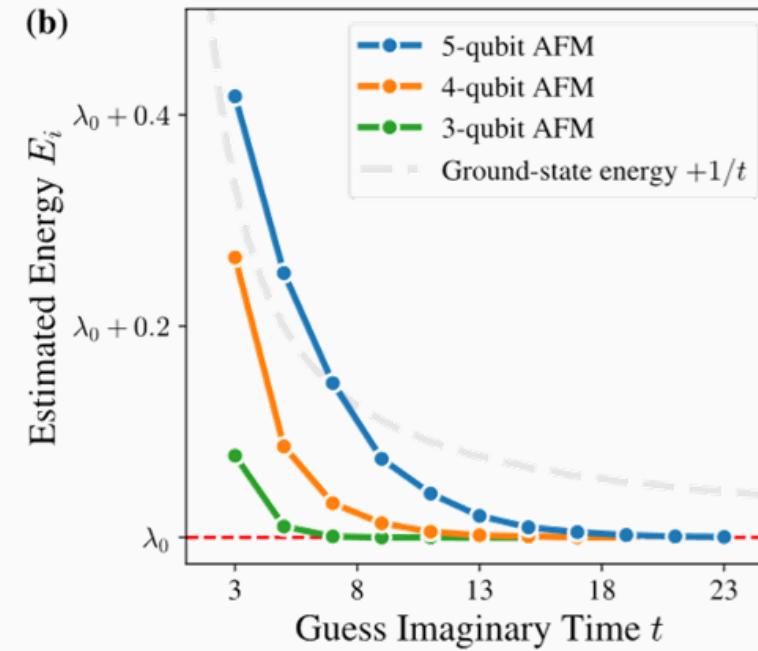
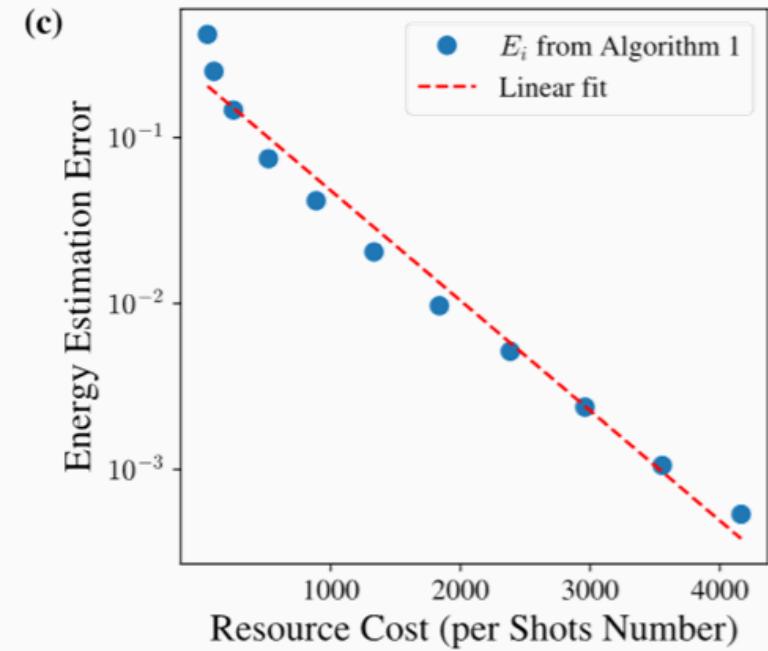
[34] Dong, Yulong, Lin Lin, and Yu Tong. "Ground-state preparation and energy estimation on early fault-tolerant quantum computers via quantum eigenvalue transformation of unitary matrices." *PRX Quantum* 3.4 (2022): 040305.

[35] Ding, Zhiyan, and Lin Lin. "Even shorter quantum circuit for phase estimation on early fault-tolerant quantum computers with applications to ground-state energy estimation." *PRX Quantum* 4.2 (2023): 020331.

* This table is not shown on arXiv and will be updated in the version 3 soon

Experiments

Hamiltonian Type Antiferromagnetic Heisenberg Model (AFM) $H \propto \sum_{j=0}^n (X_j X_{j+1} + Y_j Y_{j+1} + Z_j Z_{j+1} - I)$



Complete tasks with imaginary-time evolution time up to 50

- The first ITE algorithm proved to have polynomial resource dependence in evolution time
- Applying ITE to ground-state problems can reduce circuit depth
- Potential caveats
 - Does not consider classical machine error

Thank you

Research Group

Preprint
(v3 updated soon)

Code Repo