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Imaginary-time evolution (ITE)

Problem For Hamiltonian 𝐻, given initial state 𝜙(0) , prepare the 

normalized solution of imaginary-time Schrödinger equation

𝜕𝜏 𝜙 𝜏 = −𝐻 𝜙 𝜏 with 𝜙 = 𝜙(0)

⟹ 𝜙 𝜏 = 𝑒−𝜏𝐻 𝜙 / 𝑒−𝜏𝐻 𝜙

𝜏 imaginary evolution time

𝜙 𝜏 normalized imaginary-time evolved state (ITE state)

𝜙 → 𝜙 𝜏  imaginary-time evolution operator (ITE operator)
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Imaginary-time evolution

Application

• Ground state preparation           𝜓0 ∝ lim
𝜏→∞

𝒆−𝝉𝑯 𝜙 0 if  𝜓0|𝜙 0 > 0

• Thermal state preparation [1]         𝜌 = 𝒆−𝝉𝑯 / Tr(𝑒−𝜏𝐻)

• Open-system simulation [2]       𝑒ℒ𝑡 𝜌 = 𝑉𝜌𝑉†, 𝑉 = lim
𝑁→∞

𝑒−𝑖𝑡𝐻1/𝑁𝒆−𝒕𝑯𝟐/𝑵
𝑁

• Others:

• computing Hamiltonian-related properties [3]

• data classification [4], optimization [5]

• quantum mechanics [6], quantum field theory [7]



Existing works

Routine 1

Fix one 𝜙 . Find a physical unitary 𝑈 such that 𝑈 𝜙 = 𝜙 𝜏 .

① (PQC scheme)         find 𝜃∗ such that 𝑈 𝜃∗ ≈ 𝑈 [1]

② (Manifold scheme)  find 𝑉 ∈ SU(2𝑛) such that 𝑉 ≈ 𝑈 [2]

③ (Trotter scheme)      compute 𝑡𝑗 , 𝐴𝑗 such that ς𝑗 𝑒
−𝑖𝐴𝑗𝑡𝑗 ≈ 𝑈 [3]

✓ polynomial resource complexity in system size

✓ execute without failure

one solution cannot be converted to the other that has unknown initial state

unclear relation between 𝜏 and precision, possibly an exponential dependency

[1] McArdle, Sam, et al. "Variational ansatz-based quantum simulation of imaginary time evolution." npj Quantum Information 5.1 (2019): 75.

[2] Gluza, Marek, et al. "Double-bracket quantum algorithms for quantum imaginary-time evolution." arXiv preprint arXiv:2412.04554 (2024).

[3] Motta, Mario, et al. "Determining eigenstates and thermal states on a quantum computer using quantum imaginary time evolution." Nature Physics 16.2 (2020): 205-210.



exponential decay problem

✓ polynomial resource complexity in system size

✓ theoretically analyzed; work for any initial state

success probability decrease exponentially with 𝜏

Existing works

Routine 2

Unknown 𝜙 . Find a physical operation ℰ such that ℰ 𝜙 = 𝜙 𝜏 or FAILURE.

Short Conclusion

• For long imaginary evolution,  algorithms are either 

• heuristic or 

• theoretically infeasible
NEED ITE algorithm for 𝜏 ≫ 0



Transformation of quantum data

• A unitary 𝑈 applies rotations with respect to its eigenspaces. 

eigenphase: angle of the rotation

eigenbasis: basis of the rotationeigenvalue: amplitude of the rotation

𝑼 = Σ𝐣 𝒆
𝒊𝝀𝒋 𝝍𝒋 𝝍𝒋



Transformation of quantum data

• Transformation of 𝑈 in terms of function 𝑓:ℝ → ℂ can be described as 

eigenphase: angle of the rotation

eigenbasis: basis of the rotationeigenvalue: amplitude of the rotation

• Quantum algorithms using unitaries deal with eigen-information procession.
• Extract the target eigenphase/value – Shor, HHL, QAE

• Amplify the target eigenphase/value – Hamiltonian simulation, Grover

𝒇 𝑼 = Σ𝐣 𝒇 𝝀𝒋 𝝍𝒋 𝝍𝒋
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Transformation of quantum data

Core Idea 1

Use quantum phase processing (QPP) [1] , a QSP-based structure to simulate transformation

...

...𝑈 𝑈† 𝑈

𝑍-rotation 

𝑌-rotation 

𝑃 𝑈 −𝑄 𝑈

𝑄∗ 𝑈 𝑃∗ 𝑈
𝑃, 𝑄 satisfy  ൞

𝑃, 𝑄 ∈ ℂ 𝑒−𝑖𝑥/2, 𝑒𝑖𝑥/2 ,

deg 𝑃 = deg𝑄
𝑃, 𝑄 has the same parity



Transformation of quantum data

Core Idea 1

Use quantum phase processing (QPP), a QSP-based structure to simulate transformation 𝐹

…

…−𝜋 𝜋

…

…
𝜋−𝜋

−1

1How to simulate 𝑓 𝑈 ?

① Assume access to control − 𝑈
② Compute 𝑓’s Fourier approximation 𝐹
③ Compute rotation angles for 

④ Construct the QPP circuit

⑤ Post-select the ancilla qubit

...

...𝑈 𝑈† 𝑈𝜙

0
Post-selection 

on outcome 0

𝐹 𝑈 𝜙

𝐹 𝑈 𝜙



Transformation of quantum data

Core Idea 1

Use quantum phase processing (QPP) to simulate transformation

...

...𝑈 𝑈† 𝑈𝜙

0
Post-selection 

on outcome 0

𝐹 𝑈 𝜙

𝐹 𝑈 𝜙

For ITE problem, choose 𝑈 = 𝑒−𝑖𝐻

output state ≈ 𝜙 𝜏 with success probability 𝒪 𝑒−2𝜏
𝐹 𝑥 ≈ 𝑒𝜏𝑥/𝑒𝜏, then

Naïve choice raises exponential decay problem



Adaptive normalization

Core Idea 2

Choose an exponential transformation with adaptive normalization factor 𝝀. Consider function

𝑭 𝒙 ≈ 𝒆𝝉𝒙 ⟹ 𝑭 𝒙 ≈ ൝
𝜶𝒆𝝉 𝒙−𝝀 , 𝒙 ∈ −𝝅, 𝝀
𝝃𝝉,𝝀 𝒙 , 𝒙 ∈ 𝝀, 𝝅

where 𝜶, 𝝃𝝉,𝝀 ensure approximation error decays super-polynomially with the degree of approximation. 

Finding 𝝀 ∈ 𝜆0 , 𝜆0 + 𝜏−1  outputs 

an approximated ITE state with 

success probability nearly lower 

bounded by a CONSTANT 𝛼2𝑒−2𝛾2

Avoids the exponential decay problem



Main results

𝝀 ∈ 𝜆0 , 𝜆0 + 𝜏−1

Error of ITE state preparation: 𝒪 10−5

Success probability ≳ 𝛼2𝑒−2𝛾2

i)   eigenvalues of 𝐻 is within −1, 1 , and ground-state energy 𝜆0 is negative

iv) imaginary-time evolution is long i.e., 𝜏 ≫ 0

v)  the overlap between input state 𝜙 0 and the ground state is non-zero

* Some modifications are not shown on arXiv and will be updated in the version 3 soon

Assumptions without loss of generality



Main results

Main Result    Approximates the target state to 

polynomially small errors in inverse imaginary time 

using polynomially many elementary quantum gates 

and a single ancilla qubit.

vii)   the overlap between input state 𝜙 0 and the ground state is at least 𝒪 poly 𝑛−1

viii)  the gap Δ between the ground-state energy 𝜆0 and the first-excited-state energy 𝜆1 is not zero 

ix)    Δ satisfies e𝜏Δ is at least 𝒪 poly 𝜏

Assumptions that are specific to this problem 



Comparison with theoretical works
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adaptive normalization

proves ITE state can be prepared in polynomial resource 

in terms of evolution time

holds for reasonable ground-state overlap



Summary for the ITE part

Why ITE state can be prepared in polynomial resource?

① Multi-qubit QSP circuits are independent of system size

② Exponential transformation can be approximated via super-polynomial Fourier convergence

③ Assumption on reasonable ground state overlap (otherwise may not be scalable in system size)

not scalable for directly applying to Gibbs state preparation 

Ground-state energy estimation
of precision 𝓞 𝝉−𝟏

ITE state preparation

of precision 𝓞 𝐩𝐨𝐥𝐲 𝝉−𝟏



Application
• Ground state preparation and ground-state energy estimation



Application to Ground-state problems

• Given a non-degenerate Hamiltonian

𝐻 = σ𝑗 𝜆𝑗 𝜓𝑗 𝜓𝑗 , with 𝜆0 < 𝜆1 ≤ ⋯

find

𝜆0 → Ground-state energy estimation

𝜓0 → Ground-state preparation

• Common query model    𝑈 𝑡 = 𝑒𝑖𝐻𝑡



Application to Ground-state problems

• ITE state converges to the 
ground state as 𝜏 → ∞

• The rate of convergence is 
at least polynomial if 

𝑒𝜏Δ = Ω poly 𝜏

Ground-state 

energy estimation
of precision 𝓞 𝝉−𝟏

ITE state preparation

of precision 𝓞 𝐩𝐨𝐥𝐲 𝝉−𝟏
Ground-state preparation

of precision 𝓞 𝐩𝐨𝐥𝐲 𝝉−𝟏

If 𝜏 satisfies 𝑒𝜏Δ = Ω poly 𝜏 :

How to find such 𝜏 ?



Application to Ground-state problems

• ITE state converges to the 
ground state as 𝜏 → ∞

• The rate of convergence is 
at least polynomial if 

𝑒𝜏Δ = Ω poly 𝜏

Problem to be solved For Hamiltonian 𝐻, find

1. 𝜏 ≫ 0 s.t. 𝑒𝜏Δ = Ω poly 𝜏 (ITE state ≈ ground state)

2. 𝜆 ∈ 𝜆0 , 𝜆0 + 𝜏−1 (efficient ITE state preparation)

3. 𝐸, an estimation of ITE state’s expectation value w.r.t. 𝐻

(ground-state energy estimation)



Our work

Algorithm Sketch

1. Start with a guess time 𝑡, and a search interval 𝜆𝑙 , 𝜆𝑟
2. Measure QPP circuits that prepare ITE states, which will 

give an estimation 𝐸𝑖 and the interval where 𝜆0 lies.

3. If search interval is small enough and the estimation 

sequence 𝐸𝑖 𝑖 converges, return 𝑡, 𝜆𝑟 , 𝐸−1
4. Otherwise, update guess time, search interval, and go back 

to Step 1.

Expectation value of circuit wrt. 𝑯

𝝀



Our work

Algorithm Sketch

1. Start with a guess time 𝜏, and a search interval 𝜆𝑙 , 𝜆𝑟
2. Measure QPP circuits that prepare ITE states, which will 

give an estimation 𝐸𝑖 and the location where 𝜆0 lies.

3. If search interval is small enough and the estimation 

sequence 𝐸𝑖 𝑖 converges, return 𝜏, 𝜆𝑟 , 𝐸−1
4. Otherwise, update guess time, search interval, and go back 

to Step 1.



Comparison with existing works
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Obtain shorter circuit depth as a trade-off of more queries to 𝑈𝐻



Experiments

Hamiltonian Type  Antiferromagnetic Heisenberg Model (AFM)  𝐻 ∝ σ𝑗=0
𝑛 𝑋𝑗𝑋𝑗+1 + 𝑌𝑗𝑌𝑗+1 + 𝑍𝑗𝑍𝑗+1 − 𝐼

Complete tasks with imaginary-time evolution time up to 50



Summary

• The first ITE algorithm proved to have 

polynomial resource dependence in evolution time

• Applying ITE to ground-state problems can reduce circuit depth

• Potential caveats
• Does not consider classical machine error
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